Əsas məzmuna keç
x üçün həll et (complex solution)
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

x^{2}+3x+3=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-3±\sqrt{3^{2}-4\times 3}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün 3 və c üçün 3 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-3±\sqrt{9-4\times 3}}{2}
Kvadrat 3.
x=\frac{-3±\sqrt{9-12}}{2}
-4 ədədini 3 dəfə vurun.
x=\frac{-3±\sqrt{-3}}{2}
9 -12 qrupuna əlavə edin.
x=\frac{-3±\sqrt{3}i}{2}
-3 kvadrat kökünü alın.
x=\frac{-3+\sqrt{3}i}{2}
İndi ± plyus olsa x=\frac{-3±\sqrt{3}i}{2} tənliyini həll edin. -3 i\sqrt{3} qrupuna əlavə edin.
x=\frac{-\sqrt{3}i-3}{2}
İndi ± minus olsa x=\frac{-3±\sqrt{3}i}{2} tənliyini həll edin. -3 ədədindən i\sqrt{3} ədədini çıxın.
x=\frac{-3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-3}{2}
Tənlik indi həll edilib.
x^{2}+3x+3=0
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
x^{2}+3x+3-3=-3
Tənliyin hər iki tərəfindən 3 çıxın.
x^{2}+3x=-3
3 ədədindən özünün çıxılması 0-a bərabərdir.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-3+\left(\frac{3}{2}\right)^{2}
x həddinin əmsalı olan 3 ədədini \frac{3}{2} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə \frac{3}{2} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}+3x+\frac{9}{4}=-3+\frac{9}{4}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla \frac{3}{2} kvadratlaşdırın.
x^{2}+3x+\frac{9}{4}=-\frac{3}{4}
-3 \frac{9}{4} qrupuna əlavə edin.
\left(x+\frac{3}{2}\right)^{2}=-\frac{3}{4}
Faktor x^{2}+3x+\frac{9}{4}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+\frac{3}{2}=\frac{\sqrt{3}i}{2} x+\frac{3}{2}=-\frac{\sqrt{3}i}{2}
Sadələşdirin.
x=\frac{-3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-3}{2}
Tənliyin hər iki tərəfindən \frac{3}{2} çıxın.