Qiymətləndir
x^{2}-36
Amil
\left(x-6\right)\left(x+6\right)
Qrafik
Paylaş
Panoya köçürüldü
x^{2}+0-36
Sıfıra vurulan istənilən şeydən sıfır alınır.
x^{2}-36
-36 almaq üçün 0 36 çıxın.
x^{2}-36
Həddlər kimi vurun və birləşdirin.
\left(x-6\right)\left(x+6\right)
x^{2}-36 x^{2}-6^{2} kimi yenidən yazılsın. Kvadratlardakı fərq bu qaydadan istifadə etməklə vuruqlara ayrıla bilər: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x^{2}-36=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
x=\frac{0±\sqrt{0^{2}-4\left(-36\right)}}{2}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{0±\sqrt{-4\left(-36\right)}}{2}
Kvadrat 0.
x=\frac{0±\sqrt{144}}{2}
-4 ədədini -36 dəfə vurun.
x=\frac{0±12}{2}
144 kvadrat kökünü alın.
x=6
İndi ± plyus olsa x=\frac{±12}{2} tənliyini həll edin. 12 ədədini 2 ədədinə bölün.
x=-6
İndi ± minus olsa x=\frac{±12}{2} tənliyini həll edin. -12 ədədini 2 ədədinə bölün.
x^{2}-36=\left(x-6\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün 6 və x_{2} üçün -6 əvəzləyici.
x^{2}-36=\left(x-6\right)\left(x+6\right)
p-\left(-q\right) formasının bütün ifadələrini p+q ifadəsinə sadələşdirin.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}