x üçün həll et (complex solution)
\left\{\begin{matrix}x=\frac{2^{\frac{2}{3}}\left(-1+\sqrt{3}i\right)^{-\frac{1}{3}}\left(\left(-1+\sqrt{3}i\right)^{\frac{2}{3}}+2^{\frac{2}{3}}\right)}{2}\approx 1,532088886+2,220446049 \cdot 10^{-16}i\text{, }&\sqrt[3]{\frac{-1+\sqrt{3}i}{2}}+\left(\frac{-1+\sqrt{3}i}{2}\right)^{-\frac{1}{3}}\neq 0\\x=\frac{\sqrt[3]{2}\left(-1+\sqrt{3}i\right)^{-\frac{4}{3}}\left(\sqrt[3]{2}\left(-1+\sqrt{3}i\right)^{\frac{8}{3}}+8\right)}{4}\approx -1,879385242\text{, }&\left(\frac{-1+\sqrt{3}i}{2}\right)^{-\frac{4}{3}}+\left(\frac{-1+\sqrt{3}i}{2}\right)^{\frac{4}{3}}\neq 0\\x=\frac{\sqrt[3]{2}\left(1+\sqrt{3}i\right)^{-\frac{2}{3}}\left(\left(1+\sqrt{3}i\right)^{\frac{4}{3}}+2^{\frac{4}{3}}\right)}{2}\approx 1,532088886-2,220446049 \cdot 10^{-16}i\text{, }&\left(\frac{1+\sqrt{3}i}{2}\right)^{-\frac{2}{3}}+\left(\frac{1+\sqrt{3}i}{2}\right)^{\frac{2}{3}}\neq 0\end{matrix}\right,
x üçün həll et
x=-2\cos(\frac{\pi }{9})\approx -1,879385242
x=2\cos(\frac{2\pi }{9})\approx 1,532088886
x=2\sin(\frac{\pi }{18})\approx 0,347296355
Qrafik
Paylaş
Panoya köçürüldü
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}