y üçün həll et
y=-\frac{7-4x}{4x-3}
x\neq \frac{3}{4}
x üçün həll et
x=-\frac{7-3y}{4\left(y-1\right)}
y\neq 1
Qrafik
Paylaş
Panoya köçürüldü
x\times 4\left(y-1\right)=-4+4\left(y-1\right)\times \frac{3}{4}
Sıfıra bölmə müəyyən edilmədiyi üçün y dəyişəni 1 ədədinə bərabər ola bilməz. 4\left(y-1\right) ilə tənliyin hər iki tərəfini artırın, ən aşağı ümumi vuran y-1,4 olmalıdır.
4xy-x\times 4=-4+4\left(y-1\right)\times \frac{3}{4}
x\times 4 ədədini y-1 vurmaq üçün paylama qanunundan istifadə edin.
4xy-4x=-4+4\left(y-1\right)\times \frac{3}{4}
-4 almaq üçün -1 və 4 vurun.
4xy-4x=-4+3\left(y-1\right)
3 almaq üçün 4 və \frac{3}{4} vurun.
4xy-4x=-4+3y-3
3 ədədini y-1 vurmaq üçün paylama qanunundan istifadə edin.
4xy-4x=-7+3y
-7 almaq üçün -4 3 çıxın.
4xy-4x-3y=-7
Hər iki tərəfdən 3y çıxın.
4xy-3y=-7+4x
4x hər iki tərəfə əlavə edin.
\left(4x-3\right)y=-7+4x
y ehtiva edən bütün həddləri birləşdirin.
\left(4x-3\right)y=4x-7
Tənlik standart formadadır.
\frac{\left(4x-3\right)y}{4x-3}=\frac{4x-7}{4x-3}
Hər iki tərəfi 4x-3 rəqəminə bölün.
y=\frac{4x-7}{4x-3}
4x-3 ədədinə bölmək 4x-3 ədədinə vurmanı qaytarır.
y=\frac{4x-7}{4x-3}\text{, }y\neq 1
y dəyişəni 1 ədədinə bərabər ola bilməz.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}