Əsas məzmuna keç
x üçün həll et (complex solution)
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

x^{2}+x+7=6
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x^{2}+x+7-6=6-6
Tənliyin hər iki tərəfindən 6 çıxın.
x^{2}+x+7-6=0
6 ədədindən özünün çıxılması 0-a bərabərdir.
x^{2}+x+1=0
7 ədədindən 6 ədədini çıxın.
x=\frac{-1±\sqrt{1^{2}-4}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün 1 və c üçün 1 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-1±\sqrt{1-4}}{2}
Kvadrat 1.
x=\frac{-1±\sqrt{-3}}{2}
1 -4 qrupuna əlavə edin.
x=\frac{-1±\sqrt{3}i}{2}
-3 kvadrat kökünü alın.
x=\frac{-1+\sqrt{3}i}{2}
İndi ± plyus olsa x=\frac{-1±\sqrt{3}i}{2} tənliyini həll edin. -1 i\sqrt{3} qrupuna əlavə edin.
x=\frac{-\sqrt{3}i-1}{2}
İndi ± minus olsa x=\frac{-1±\sqrt{3}i}{2} tənliyini həll edin. -1 ədədindən i\sqrt{3} ədədini çıxın.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Tənlik indi həll edilib.
x^{2}+x+7=6
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
x^{2}+x+7-7=6-7
Tənliyin hər iki tərəfindən 7 çıxın.
x^{2}+x=6-7
7 ədədindən özünün çıxılması 0-a bərabərdir.
x^{2}+x=-1
6 ədədindən 7 ədədini çıxın.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
x həddinin əmsalı olan 1 ədədini \frac{1}{2} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə \frac{1}{2} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla \frac{1}{2} kvadratlaşdırın.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
-1 \frac{1}{4} qrupuna əlavə edin.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
Faktor x^{2}+x+\frac{1}{4}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Sadələşdirin.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Tənliyin hər iki tərəfindən \frac{1}{2} çıxın.