Əsas məzmuna keç
Qiymətləndir
Tick mark Image
x ilə əlaqədar diferensiallaşdırın
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

\frac{\left(x+4\right)\left(x-2\right)}{x-2}+\frac{1}{x-2}
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. x+4 ədədini \frac{x-2}{x-2} dəfə vurun.
\frac{\left(x+4\right)\left(x-2\right)+1}{x-2}
\frac{\left(x+4\right)\left(x-2\right)}{x-2} və \frac{1}{x-2} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{x^{2}-2x+4x-8+1}{x-2}
\left(x+4\right)\left(x-2\right)+1 ifadəsində vurma əməliyyatları aparın.
\frac{x^{2}+2x-7}{x-2}
x^{2}-2x+4x-8+1 ifadəsindəki həddlər kimi birləşdirin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+4\right)\left(x-2\right)}{x-2}+\frac{1}{x-2})
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. x+4 ədədini \frac{x-2}{x-2} dəfə vurun.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+4\right)\left(x-2\right)+1}{x-2})
\frac{\left(x+4\right)\left(x-2\right)}{x-2} və \frac{1}{x-2} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-2x+4x-8+1}{x-2})
\left(x+4\right)\left(x-2\right)+1 ifadəsində vurma əməliyyatları aparın.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+2x-7}{x-2})
x^{2}-2x+4x-8+1 ifadəsindəki həddlər kimi birləşdirin.
\frac{\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+2x^{1}-7)-\left(x^{2}+2x^{1}-7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)}{\left(x^{1}-2\right)^{2}}
İstənilən diferensial funksiyalar üçün iki funksiyanın nisbətinin törəməsi məxrəci surətin törəməsinə vurub surətin məxrəcin törəməsinə vurulmasından çıxmaqla alınır, hamısı kvadrat məxrəcə bölünür.
\frac{\left(x^{1}-2\right)\left(2x^{2-1}+2x^{1-1}\right)-\left(x^{2}+2x^{1}-7\right)x^{1-1}}{\left(x^{1}-2\right)^{2}}
Polinomun törəməsi onun həddlərinin törəməsinin cəmidir. İstənilən konstant həddin törəməsi 0-dır. ax^{n} törəməsi nax^{n-1}-dir.
\frac{\left(x^{1}-2\right)\left(2x^{1}+2x^{0}\right)-\left(x^{2}+2x^{1}-7\right)x^{0}}{\left(x^{1}-2\right)^{2}}
Sadələşdirin.
\frac{x^{1}\times 2x^{1}+x^{1}\times 2x^{0}-2\times 2x^{1}-2\times 2x^{0}-\left(x^{2}+2x^{1}-7\right)x^{0}}{\left(x^{1}-2\right)^{2}}
x^{1}-2 ədədini 2x^{1}+2x^{0} dəfə vurun.
\frac{x^{1}\times 2x^{1}+x^{1}\times 2x^{0}-2\times 2x^{1}-2\times 2x^{0}-\left(x^{2}x^{0}+2x^{1}x^{0}-7x^{0}\right)}{\left(x^{1}-2\right)^{2}}
x^{2}+2x^{1}-7 ədədini x^{0} dəfə vurun.
\frac{2x^{1+1}+2x^{1}-2\times 2x^{1}-2\times 2x^{0}-\left(x^{2}+2x^{1}-7x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Eyni əsasın qüvvətlərini vurmaq üçün onların eksponentlərini toplayın.
\frac{2x^{2}+2x^{1}-4x^{1}-4x^{0}-\left(x^{2}+2x^{1}-7x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Sadələşdirin.
\frac{x^{2}-4x^{1}+3x^{0}}{\left(x^{1}-2\right)^{2}}
Həddlər kimi birləşdirin.
\frac{x^{2}-4x+3x^{0}}{\left(x-2\right)^{2}}
İstənilən şərt üçün t, t^{1}=t.
\frac{x^{2}-4x+3\times 1}{\left(x-2\right)^{2}}
İstənilən şərt üçün t 0 başqa, t^{0}=1.
\frac{x^{2}-4x+3}{\left(x-2\right)^{2}}
İstənilən şərt üçün t, t\times 1=t və 1t=t.