Amil
\left(w-7\right)\left(w-2\right)
Qiymətləndir
\left(w-7\right)\left(w-2\right)
Paylaş
Panoya köçürüldü
a+b=-9 ab=1\times 14=14
Qruplaşdırmaqla ifadəni əmsallarına ayırın. Əvvəlcə ifadə w^{2}+aw+bw+14 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,-14 -2,-7
ab müsbət olduğu üçün a və b ədədinin eyni işarəsi var. a+b mənfi olduğu üçün a və b hər ikisi mənfidir. 14 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1-14=-15 -2-7=-9
Hər cüt üçün cəmi hesablayın.
a=-7 b=-2
Həll -9 cəmini verən cütdür.
\left(w^{2}-7w\right)+\left(-2w+14\right)
w^{2}-9w+14 \left(w^{2}-7w\right)+\left(-2w+14\right) kimi yenidən yazılsın.
w\left(w-7\right)-2\left(w-7\right)
Birinci qrupda w ədədini və ikinci qrupda isə -2 ədədini vurub çıxarın.
\left(w-7\right)\left(w-2\right)
Paylayıcı xüsusiyyətini istifadə etməklə w-7 ümumi ifadəsi vurulanlara ayrılsın.
w^{2}-9w+14=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
w=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 14}}{2}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
w=\frac{-\left(-9\right)±\sqrt{81-4\times 14}}{2}
Kvadrat -9.
w=\frac{-\left(-9\right)±\sqrt{81-56}}{2}
-4 ədədini 14 dəfə vurun.
w=\frac{-\left(-9\right)±\sqrt{25}}{2}
81 -56 qrupuna əlavə edin.
w=\frac{-\left(-9\right)±5}{2}
25 kvadrat kökünü alın.
w=\frac{9±5}{2}
-9 rəqəminin əksi budur: 9.
w=\frac{14}{2}
İndi ± plyus olsa w=\frac{9±5}{2} tənliyini həll edin. 9 5 qrupuna əlavə edin.
w=7
14 ədədini 2 ədədinə bölün.
w=\frac{4}{2}
İndi ± minus olsa w=\frac{9±5}{2} tənliyini həll edin. 9 ədədindən 5 ədədini çıxın.
w=2
4 ədədini 2 ədədinə bölün.
w^{2}-9w+14=\left(w-7\right)\left(w-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün 7 və x_{2} üçün 2 əvəzləyici.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}