Amil
\left(j-17\right)\left(j+1\right)
Qiymətləndir
\left(j-17\right)\left(j+1\right)
Paylaş
Panoya köçürüldü
a+b=-16 ab=1\left(-17\right)=-17
Qruplaşdırmaqla ifadəni əmsallarına ayırın. Əvvəlcə ifadə j^{2}+aj+bj-17 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
a=-17 b=1
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b mənfi olduğu üçün mənfi rəqəmin müsbətdən daha böyük mütləq qiyməti var. Yalnız belə cüt sistem həllidir.
\left(j^{2}-17j\right)+\left(j-17\right)
j^{2}-16j-17 \left(j^{2}-17j\right)+\left(j-17\right) kimi yenidən yazılsın.
j\left(j-17\right)+j-17
j^{2}-17j-də j vurulanlara ayrılsın.
\left(j-17\right)\left(j+1\right)
Paylayıcı xüsusiyyətini istifadə etməklə j-17 ümumi ifadəsi vurulanlara ayrılsın.
j^{2}-16j-17=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
j=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-17\right)}}{2}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
j=\frac{-\left(-16\right)±\sqrt{256-4\left(-17\right)}}{2}
Kvadrat -16.
j=\frac{-\left(-16\right)±\sqrt{256+68}}{2}
-4 ədədini -17 dəfə vurun.
j=\frac{-\left(-16\right)±\sqrt{324}}{2}
256 68 qrupuna əlavə edin.
j=\frac{-\left(-16\right)±18}{2}
324 kvadrat kökünü alın.
j=\frac{16±18}{2}
-16 rəqəminin əksi budur: 16.
j=\frac{34}{2}
İndi ± plyus olsa j=\frac{16±18}{2} tənliyini həll edin. 16 18 qrupuna əlavə edin.
j=17
34 ədədini 2 ədədinə bölün.
j=-\frac{2}{2}
İndi ± minus olsa j=\frac{16±18}{2} tənliyini həll edin. 16 ədədindən 18 ədədini çıxın.
j=-1
-2 ədədini 2 ədədinə bölün.
j^{2}-16j-17=\left(j-17\right)\left(j-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün 17 və x_{2} üçün -1 əvəzləyici.
j^{2}-16j-17=\left(j-17\right)\left(j+1\right)
p-\left(-q\right) formasının bütün ifadələrini p+q ifadəsinə sadələşdirin.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}