a üçün həll et
\left\{\begin{matrix}\\a=-b\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&f=\frac{25}{2}\end{matrix}\right,
b üçün həll et
\left\{\begin{matrix}\\b=-a\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&f=\frac{25}{2}\end{matrix}\right,
Paylaş
Panoya köçürüldü
f\times 2a+2fb=25\left(a+b\right)
25 almaq üçün 5 və 5 vurun.
f\times 2a+2fb=25a+25b
25 ədədini a+b vurmaq üçün paylama qanunundan istifadə edin.
f\times 2a+2fb-25a=25b
Hər iki tərəfdən 25a çıxın.
f\times 2a-25a=25b-2fb
Hər iki tərəfdən 2fb çıxın.
\left(f\times 2-25\right)a=25b-2fb
a ehtiva edən bütün həddləri birləşdirin.
\left(2f-25\right)a=25b-2bf
Tənlik standart formadadır.
\frac{\left(2f-25\right)a}{2f-25}=\frac{b\left(25-2f\right)}{2f-25}
Hər iki tərəfi -25+2f rəqəminə bölün.
a=\frac{b\left(25-2f\right)}{2f-25}
-25+2f ədədinə bölmək -25+2f ədədinə vurmanı qaytarır.
a=-b
b\left(25-2f\right) ədədini -25+2f ədədinə bölün.
f\times 2a+2fb=25\left(a+b\right)
25 almaq üçün 5 və 5 vurun.
f\times 2a+2fb=25a+25b
25 ədədini a+b vurmaq üçün paylama qanunundan istifadə edin.
f\times 2a+2fb-25b=25a
Hər iki tərəfdən 25b çıxın.
2fb-25b=25a-f\times 2a
Hər iki tərəfdən f\times 2a çıxın.
2fb-25b=25a-2fa
-2 almaq üçün -1 və 2 vurun.
\left(2f-25\right)b=25a-2fa
b ehtiva edən bütün həddləri birləşdirin.
\left(2f-25\right)b=25a-2af
Tənlik standart formadadır.
\frac{\left(2f-25\right)b}{2f-25}=\frac{a\left(25-2f\right)}{2f-25}
Hər iki tərəfi -25+2f rəqəminə bölün.
b=\frac{a\left(25-2f\right)}{2f-25}
-25+2f ədədinə bölmək -25+2f ədədinə vurmanı qaytarır.
b=-a
a\left(25-2f\right) ədədini -25+2f ədədinə bölün.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}