Əsas məzmuna keç
a üçün həll et
Tick mark Image
b üçün həll et
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Tənliyin hər iki tərəfini \left(x^{2}+c\right)^{2} rəqəminə vurun.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
\left(x^{2}+c\right)^{2} genişləndirmək üçün \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ikitərkibli teoremindən istifadə edin.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Qüvvəti başqa qüvvətə yüksəltmək üçün göstəriciləri vurun. 4 almaq üçün 2 və 2 vurun.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
\frac{\mathrm{d}}{\mathrm{d}x}(f)x ədədini x^{4}+2x^{2}c+c^{2} vurmaq üçün paylama qanunundan istifadə edin.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Tərəfləri elə dəyişdirin ki, bütün dəyişən hədlər sol tərəfdə olsun.
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
2bx hər iki tərəfə əlavə edin.
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Həddləri yenidən sıralayın.
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
a ehtiva edən bütün həddləri birləşdirin.
\left(c-x^{2}\right)a=2bx
Tənlik standart formadadır.
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
Hər iki tərəfi -x^{2}+c rəqəminə bölün.
a=\frac{2bx}{c-x^{2}}
-x^{2}+c ədədinə bölmək -x^{2}+c ədədinə vurmanı qaytarır.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Tənliyin hər iki tərəfini \left(x^{2}+c\right)^{2} rəqəminə vurun.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
\left(x^{2}+c\right)^{2} genişləndirmək üçün \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ikitərkibli teoremindən istifadə edin.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Qüvvəti başqa qüvvətə yüksəltmək üçün göstəriciləri vurun. 4 almaq üçün 2 və 2 vurun.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
\frac{\mathrm{d}}{\mathrm{d}x}(f)x ədədini x^{4}+2x^{2}c+c^{2} vurmaq üçün paylama qanunundan istifadə edin.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Tərəfləri elə dəyişdirin ki, bütün dəyişən hədlər sol tərəfdə olsun.
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
Hər iki tərəfdən \left(-a\right)x^{2} çıxın.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
Hər iki tərəfdən ac çıxın.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
1 almaq üçün -1 və -1 vurun.
\left(-2x\right)b=ax^{2}-ac
Tənlik standart formadadır.
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
Hər iki tərəfi -2x rəqəminə bölün.
b=\frac{a\left(x^{2}-c\right)}{-2x}
-2x ədədinə bölmək -2x ədədinə vurmanı qaytarır.
b=-\frac{ax}{2}+\frac{ac}{2x}
a\left(x^{2}-c\right) ədədini -2x ədədinə bölün.