Amil
\left(d-5\right)\left(d+1\right)
Qiymətləndir
\left(d-5\right)\left(d+1\right)
Paylaş
Panoya köçürüldü
a+b=-4 ab=1\left(-5\right)=-5
Qruplaşdırmaqla ifadəni əmsallarına ayırın. Əvvəlcə ifadə d^{2}+ad+bd-5 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
a=-5 b=1
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b mənfi olduğu üçün mənfi rəqəmin müsbətdən daha böyük mütləq qiyməti var. Yalnız belə cüt sistem həllidir.
\left(d^{2}-5d\right)+\left(d-5\right)
d^{2}-4d-5 \left(d^{2}-5d\right)+\left(d-5\right) kimi yenidən yazılsın.
d\left(d-5\right)+d-5
d^{2}-5d-də d vurulanlara ayrılsın.
\left(d-5\right)\left(d+1\right)
Paylayıcı xüsusiyyətini istifadə etməklə d-5 ümumi ifadəsi vurulanlara ayrılsın.
d^{2}-4d-5=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
d=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
d=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Kvadrat -4.
d=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
-4 ədədini -5 dəfə vurun.
d=\frac{-\left(-4\right)±\sqrt{36}}{2}
16 20 qrupuna əlavə edin.
d=\frac{-\left(-4\right)±6}{2}
36 kvadrat kökünü alın.
d=\frac{4±6}{2}
-4 rəqəminin əksi budur: 4.
d=\frac{10}{2}
İndi ± plyus olsa d=\frac{4±6}{2} tənliyini həll edin. 4 6 qrupuna əlavə edin.
d=5
10 ədədini 2 ədədinə bölün.
d=-\frac{2}{2}
İndi ± minus olsa d=\frac{4±6}{2} tənliyini həll edin. 4 ədədindən 6 ədədini çıxın.
d=-1
-2 ədədini 2 ədədinə bölün.
d^{2}-4d-5=\left(d-5\right)\left(d-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün 5 və x_{2} üçün -1 əvəzləyici.
d^{2}-4d-5=\left(d-5\right)\left(d+1\right)
p-\left(-q\right) formasının bütün ifadələrini p+q ifadəsinə sadələşdirin.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}