a üçün həll et (complex solution)
\left\{\begin{matrix}a=-\frac{b}{x+1}\text{, }&x\neq -1\\a\in \mathrm{C}\text{, }&x=1\text{ or }\left(b=0\text{ and }x=-1\right)\end{matrix}\right,
b üçün həll et (complex solution)
\left\{\begin{matrix}\\b=-a\left(x+1\right)\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=1\end{matrix}\right,
a üçün həll et
\left\{\begin{matrix}a=-\frac{b}{x+1}\text{, }&x\neq -1\\a\in \mathrm{R}\text{, }&x=1\text{ or }\left(b=0\text{ and }x=-1\right)\end{matrix}\right,
b üçün həll et
\left\{\begin{matrix}\\b=-a\left(x+1\right)\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=1\end{matrix}\right,
Qrafik
Paylaş
Panoya köçürüldü
ax^{2}-a=b-bx
Hər iki tərəfdən a çıxın.
\left(x^{2}-1\right)a=b-bx
a ehtiva edən bütün həddləri birləşdirin.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{b-bx}{x^{2}-1}
Hər iki tərəfi x^{2}-1 rəqəminə bölün.
a=\frac{b-bx}{x^{2}-1}
x^{2}-1 ədədinə bölmək x^{2}-1 ədədinə vurmanı qaytarır.
a=-\frac{b}{x+1}
b-bx ədədini x^{2}-1 ədədinə bölün.
a+b-bx=ax^{2}
Tərəfləri elə dəyişdirin ki, bütün dəyişən hədlər sol tərəfdə olsun.
b-bx=ax^{2}-a
Hər iki tərəfdən a çıxın.
\left(1-x\right)b=ax^{2}-a
b ehtiva edən bütün həddləri birləşdirin.
\frac{\left(1-x\right)b}{1-x}=\frac{a\left(x^{2}-1\right)}{1-x}
Hər iki tərəfi 1-x rəqəminə bölün.
b=\frac{a\left(x^{2}-1\right)}{1-x}
1-x ədədinə bölmək 1-x ədədinə vurmanı qaytarır.
b=-a\left(x+1\right)
a\left(x^{2}-1\right) ədədini 1-x ədədinə bölün.
ax^{2}-a=b-bx
Hər iki tərəfdən a çıxın.
\left(x^{2}-1\right)a=b-bx
a ehtiva edən bütün həddləri birləşdirin.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{b-bx}{x^{2}-1}
Hər iki tərəfi x^{2}-1 rəqəminə bölün.
a=\frac{b-bx}{x^{2}-1}
x^{2}-1 ədədinə bölmək x^{2}-1 ədədinə vurmanı qaytarır.
a=-\frac{b}{x+1}
b-bx ədədini x^{2}-1 ədədinə bölün.
a+b-bx=ax^{2}
Tərəfləri elə dəyişdirin ki, bütün dəyişən hədlər sol tərəfdə olsun.
b-bx=ax^{2}-a
Hər iki tərəfdən a çıxın.
\left(1-x\right)b=ax^{2}-a
b ehtiva edən bütün həddləri birləşdirin.
\frac{\left(1-x\right)b}{1-x}=\frac{a\left(x^{2}-1\right)}{1-x}
Hər iki tərəfi 1-x rəqəminə bölün.
b=\frac{a\left(x^{2}-1\right)}{1-x}
1-x ədədinə bölmək 1-x ədədinə vurmanı qaytarır.
b=-a\left(x+1\right)
a\left(x^{2}-1\right) ədədini 1-x ədədinə bölün.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}