A üçün həll et
\left\{\begin{matrix}\\A=B\text{, }&\text{unconditionally}\\A\in \mathrm{R}\text{, }&|M|=|C|\end{matrix}\right,
B üçün həll et
\left\{\begin{matrix}\\B=A\text{, }&\text{unconditionally}\\B\in \mathrm{R}\text{, }&|M|=|C|\end{matrix}\right,
Paylaş
Panoya köçürüldü
AM^{2}+BC^{2}-AC^{2}=BM^{2}
Hər iki tərəfdən AC^{2} çıxın.
AM^{2}-AC^{2}=BM^{2}-BC^{2}
Hər iki tərəfdən BC^{2} çıxın.
\left(M^{2}-C^{2}\right)A=BM^{2}-BC^{2}
A ehtiva edən bütün həddləri birləşdirin.
\frac{\left(M^{2}-C^{2}\right)A}{M^{2}-C^{2}}=\frac{B\left(M-C\right)\left(C+M\right)}{M^{2}-C^{2}}
Hər iki tərəfi M^{2}-C^{2} rəqəminə bölün.
A=\frac{B\left(M-C\right)\left(C+M\right)}{M^{2}-C^{2}}
M^{2}-C^{2} ədədinə bölmək M^{2}-C^{2} ədədinə vurmanı qaytarır.
A=B
B\left(M-C\right)\left(M+C\right) ədədini M^{2}-C^{2} ədədinə bölün.
AM^{2}+BC^{2}-BM^{2}=AC^{2}
Hər iki tərəfdən BM^{2} çıxın.
BC^{2}-BM^{2}=AC^{2}-AM^{2}
Hər iki tərəfdən AM^{2} çıxın.
\left(C^{2}-M^{2}\right)B=AC^{2}-AM^{2}
B ehtiva edən bütün həddləri birləşdirin.
\frac{\left(C^{2}-M^{2}\right)B}{C^{2}-M^{2}}=\frac{A\left(C-M\right)\left(C+M\right)}{C^{2}-M^{2}}
Hər iki tərəfi C^{2}-M^{2} rəqəminə bölün.
B=\frac{A\left(C-M\right)\left(C+M\right)}{C^{2}-M^{2}}
C^{2}-M^{2} ədədinə bölmək C^{2}-M^{2} ədədinə vurmanı qaytarır.
B=A
A\left(C-M\right)\left(C+M\right) ədədini C^{2}-M^{2} ədədinə bölün.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}