s üçün həll et
s=\frac{\sqrt{6}}{4}\approx 0,612372436
s=-\frac{\sqrt{6}}{4}\approx -0,612372436
Paylaş
Panoya köçürüldü
8s^{2}=3
3 hər iki tərəfə əlavə edin. Sıfırın üzərinə istənilən şeyi gəldikdə özü alınır.
s^{2}=\frac{3}{8}
Hər iki tərəfi 8 rəqəminə bölün.
s=\frac{\sqrt{6}}{4} s=-\frac{\sqrt{6}}{4}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
8s^{2}-3=0
Quadratic equations like this one, with an x^{2} həddi ilə, lakin x həddi olmadan belə kvadratik tənliklər hələ də kvadratlar düsturundan istifadə edərək həll edilə bilər, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, əvvəlcə onlar standart formaya salınmalıdır: ax^{2}+bx+c=0.
s=\frac{0±\sqrt{0^{2}-4\times 8\left(-3\right)}}{2\times 8}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 8, b üçün 0 və c üçün -3 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
s=\frac{0±\sqrt{-4\times 8\left(-3\right)}}{2\times 8}
Kvadrat 0.
s=\frac{0±\sqrt{-32\left(-3\right)}}{2\times 8}
-4 ədədini 8 dəfə vurun.
s=\frac{0±\sqrt{96}}{2\times 8}
-32 ədədini -3 dəfə vurun.
s=\frac{0±4\sqrt{6}}{2\times 8}
96 kvadrat kökünü alın.
s=\frac{0±4\sqrt{6}}{16}
2 ədədini 8 dəfə vurun.
s=\frac{\sqrt{6}}{4}
İndi ± plyus olsa s=\frac{0±4\sqrt{6}}{16} tənliyini həll edin.
s=-\frac{\sqrt{6}}{4}
İndi ± minus olsa s=\frac{0±4\sqrt{6}}{16} tənliyini həll edin.
s=\frac{\sqrt{6}}{4} s=-\frac{\sqrt{6}}{4}
Tənlik indi həll edilib.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}