a üçün həll et
a=\frac{13}{15}\approx 0,866666667
Paylaş
Panoya köçürüldü
21a-28-3\left(4a+5\right)-\left(6a+2\right)=a+8\left(4a-9\right)+1
7 ədədini 3a-4 vurmaq üçün paylama qanunundan istifadə edin.
21a-28-12a-15-\left(6a+2\right)=a+8\left(4a-9\right)+1
-3 ədədini 4a+5 vurmaq üçün paylama qanunundan istifadə edin.
9a-28-15-\left(6a+2\right)=a+8\left(4a-9\right)+1
9a almaq üçün 21a və -12a birləşdirin.
9a-43-\left(6a+2\right)=a+8\left(4a-9\right)+1
-43 almaq üçün -28 15 çıxın.
9a-43-6a-2=a+8\left(4a-9\right)+1
6a+2 əksini tapmaq üçün hər bir həddin əksini tapın.
3a-43-2=a+8\left(4a-9\right)+1
3a almaq üçün 9a və -6a birləşdirin.
3a-45=a+8\left(4a-9\right)+1
-45 almaq üçün -43 2 çıxın.
3a-45=a+32a-72+1
8 ədədini 4a-9 vurmaq üçün paylama qanunundan istifadə edin.
3a-45=33a-72+1
33a almaq üçün a və 32a birləşdirin.
3a-45=33a-71
-71 almaq üçün -72 və 1 toplayın.
3a-45-33a=-71
Hər iki tərəfdən 33a çıxın.
-30a-45=-71
-30a almaq üçün 3a və -33a birləşdirin.
-30a=-71+45
45 hər iki tərəfə əlavə edin.
-30a=-26
-26 almaq üçün -71 və 45 toplayın.
a=\frac{-26}{-30}
Hər iki tərəfi -30 rəqəminə bölün.
a=\frac{13}{15}
-2 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-26}{-30} kəsrini azaldın.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}