Əsas məzmuna keç
x üçün həll et
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

x\left(6x-8\right)=0
x faktorlara ayırın.
x=0 x=\frac{4}{3}
Tənliyin həllərini tapmaq üçün x=0 və 6x-8=0 ifadələrini həll edin.
6x^{2}-8x=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 6}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 6, b üçün -8 və c üçün 0 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-\left(-8\right)±8}{2\times 6}
\left(-8\right)^{2} kvadrat kökünü alın.
x=\frac{8±8}{2\times 6}
-8 rəqəminin əksi budur: 8.
x=\frac{8±8}{12}
2 ədədini 6 dəfə vurun.
x=\frac{16}{12}
İndi ± plyus olsa x=\frac{8±8}{12} tənliyini həll edin. 8 8 qrupuna əlavə edin.
x=\frac{4}{3}
4 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{16}{12} kəsrini azaldın.
x=\frac{0}{12}
İndi ± minus olsa x=\frac{8±8}{12} tənliyini həll edin. 8 ədədindən 8 ədədini çıxın.
x=0
0 ədədini 12 ədədinə bölün.
x=\frac{4}{3} x=0
Tənlik indi həll edilib.
6x^{2}-8x=0
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
\frac{6x^{2}-8x}{6}=\frac{0}{6}
Hər iki tərəfi 6 rəqəminə bölün.
x^{2}+\left(-\frac{8}{6}\right)x=\frac{0}{6}
6 ədədinə bölmək 6 ədədinə vurmanı qaytarır.
x^{2}-\frac{4}{3}x=\frac{0}{6}
2 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-8}{6} kəsrini azaldın.
x^{2}-\frac{4}{3}x=0
0 ədədini 6 ədədinə bölün.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\left(-\frac{2}{3}\right)^{2}
x həddinin əmsalı olan -\frac{4}{3} ədədini -\frac{2}{3} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə -\frac{2}{3} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4}{9}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla -\frac{2}{3} kvadratlaşdırın.
\left(x-\frac{2}{3}\right)^{2}=\frac{4}{9}
Faktor x^{2}-\frac{4}{3}x+\frac{4}{9}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x-\frac{2}{3}=\frac{2}{3} x-\frac{2}{3}=-\frac{2}{3}
Sadələşdirin.
x=\frac{4}{3} x=0
Tənliyin hər iki tərəfinə \frac{2}{3} əlavə edin.