Əsas məzmuna keç
x üçün həll et
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

\left(25x-50\right)\left(2x-10\right)=20
5 ədədini 5x-10 vurmaq üçün paylama qanunundan istifadə edin.
50x^{2}-350x+500=20
25x-50 ədədini 2x-10 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
50x^{2}-350x+500-20=0
Hər iki tərəfdən 20 çıxın.
50x^{2}-350x+480=0
480 almaq üçün 500 20 çıxın.
x=\frac{-\left(-350\right)±\sqrt{\left(-350\right)^{2}-4\times 50\times 480}}{2\times 50}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 50, b üçün -350 və c üçün 480 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-\left(-350\right)±\sqrt{122500-4\times 50\times 480}}{2\times 50}
Kvadrat -350.
x=\frac{-\left(-350\right)±\sqrt{122500-200\times 480}}{2\times 50}
-4 ədədini 50 dəfə vurun.
x=\frac{-\left(-350\right)±\sqrt{122500-96000}}{2\times 50}
-200 ədədini 480 dəfə vurun.
x=\frac{-\left(-350\right)±\sqrt{26500}}{2\times 50}
122500 -96000 qrupuna əlavə edin.
x=\frac{-\left(-350\right)±10\sqrt{265}}{2\times 50}
26500 kvadrat kökünü alın.
x=\frac{350±10\sqrt{265}}{2\times 50}
-350 rəqəminin əksi budur: 350.
x=\frac{350±10\sqrt{265}}{100}
2 ədədini 50 dəfə vurun.
x=\frac{10\sqrt{265}+350}{100}
İndi ± plyus olsa x=\frac{350±10\sqrt{265}}{100} tənliyini həll edin. 350 10\sqrt{265} qrupuna əlavə edin.
x=\frac{\sqrt{265}}{10}+\frac{7}{2}
350+10\sqrt{265} ədədini 100 ədədinə bölün.
x=\frac{350-10\sqrt{265}}{100}
İndi ± minus olsa x=\frac{350±10\sqrt{265}}{100} tənliyini həll edin. 350 ədədindən 10\sqrt{265} ədədini çıxın.
x=-\frac{\sqrt{265}}{10}+\frac{7}{2}
350-10\sqrt{265} ədədini 100 ədədinə bölün.
x=\frac{\sqrt{265}}{10}+\frac{7}{2} x=-\frac{\sqrt{265}}{10}+\frac{7}{2}
Tənlik indi həll edilib.
\left(25x-50\right)\left(2x-10\right)=20
5 ədədini 5x-10 vurmaq üçün paylama qanunundan istifadə edin.
50x^{2}-350x+500=20
25x-50 ədədini 2x-10 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
50x^{2}-350x=20-500
Hər iki tərəfdən 500 çıxın.
50x^{2}-350x=-480
-480 almaq üçün 20 500 çıxın.
\frac{50x^{2}-350x}{50}=-\frac{480}{50}
Hər iki tərəfi 50 rəqəminə bölün.
x^{2}+\left(-\frac{350}{50}\right)x=-\frac{480}{50}
50 ədədinə bölmək 50 ədədinə vurmanı qaytarır.
x^{2}-7x=-\frac{480}{50}
-350 ədədini 50 ədədinə bölün.
x^{2}-7x=-\frac{48}{5}
10 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-480}{50} kəsrini azaldın.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-\frac{48}{5}+\left(-\frac{7}{2}\right)^{2}
x həddinin əmsalı olan -7 ədədini -\frac{7}{2} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə -\frac{7}{2} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}-7x+\frac{49}{4}=-\frac{48}{5}+\frac{49}{4}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla -\frac{7}{2} kvadratlaşdırın.
x^{2}-7x+\frac{49}{4}=\frac{53}{20}
Ortaq məxrəci tapmaqla və surətləri əlavə etməklə -\frac{48}{5} kəsrini \frac{49}{4} kəsrinə əlavə edin. Daha sonra mümkündürsə, kəsri ən aşağı həddə qədər azaldın.
\left(x-\frac{7}{2}\right)^{2}=\frac{53}{20}
Faktor x^{2}-7x+\frac{49}{4}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{53}{20}}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x-\frac{7}{2}=\frac{\sqrt{265}}{10} x-\frac{7}{2}=-\frac{\sqrt{265}}{10}
Sadələşdirin.
x=\frac{\sqrt{265}}{10}+\frac{7}{2} x=-\frac{\sqrt{265}}{10}+\frac{7}{2}
Tənliyin hər iki tərəfinə \frac{7}{2} əlavə edin.