x üçün həll et
x=-\frac{\sqrt{5}p}{5}+\sqrt{5}+2
p üçün həll et
p=\sqrt{5}\left(-x+\sqrt{5}+2\right)
Qrafik
Paylaş
Panoya köçürüldü
p+x\sqrt{5}=5+2\sqrt{5}
Tərəfləri elə dəyişdirin ki, bütün dəyişən hədlər sol tərəfdə olsun.
x\sqrt{5}=5+2\sqrt{5}-p
Hər iki tərəfdən p çıxın.
\sqrt{5}x=-p+2\sqrt{5}+5
Tənlik standart formadadır.
\frac{\sqrt{5}x}{\sqrt{5}}=\frac{-p+2\sqrt{5}+5}{\sqrt{5}}
Hər iki tərəfi \sqrt{5} rəqəminə bölün.
x=\frac{-p+2\sqrt{5}+5}{\sqrt{5}}
\sqrt{5} ədədinə bölmək \sqrt{5} ədədinə vurmanı qaytarır.
x=\frac{\sqrt{5}\left(-p+2\sqrt{5}+5\right)}{5}
5+2\sqrt{5}-p ədədini \sqrt{5} ədədinə bölün.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}