Əsas məzmuna keç
n üçün həll et
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

5^{n-1}=25
Tənliyi həll etmək üçün eksponentlər və loqarifmalar qaydasından istifadə edin.
\log(5^{n-1})=\log(25)
Tənliyin hər iki tərəfinin loqarifmasını aparın.
\left(n-1\right)\log(5)=\log(25)
Qüvvətə yüksəldilmiş ədədin loqarifması ədədin loqarifmasının qüvvət dövrünə bərabədir.
n-1=\frac{\log(25)}{\log(5)}
Hər iki tərəfi \log(5) rəqəminə bölün.
n-1=\log_{5}\left(25\right)
Baza düsturunun dəyişdirilməsi ilə \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=2-\left(-1\right)
Tənliyin hər iki tərəfinə 1 əlavə edin.