Əsas məzmuna keç
Amil
Tick mark Image
Qiymətləndir
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

48x^{2}+240x-1800=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
x=\frac{-240±\sqrt{240^{2}-4\times 48\left(-1800\right)}}{2\times 48}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-240±\sqrt{57600-4\times 48\left(-1800\right)}}{2\times 48}
Kvadrat 240.
x=\frac{-240±\sqrt{57600-192\left(-1800\right)}}{2\times 48}
-4 ədədini 48 dəfə vurun.
x=\frac{-240±\sqrt{57600+345600}}{2\times 48}
-192 ədədini -1800 dəfə vurun.
x=\frac{-240±\sqrt{403200}}{2\times 48}
57600 345600 qrupuna əlavə edin.
x=\frac{-240±240\sqrt{7}}{2\times 48}
403200 kvadrat kökünü alın.
x=\frac{-240±240\sqrt{7}}{96}
2 ədədini 48 dəfə vurun.
x=\frac{240\sqrt{7}-240}{96}
İndi ± plyus olsa x=\frac{-240±240\sqrt{7}}{96} tənliyini həll edin. -240 240\sqrt{7} qrupuna əlavə edin.
x=\frac{5\sqrt{7}-5}{2}
-240+240\sqrt{7} ədədini 96 ədədinə bölün.
x=\frac{-240\sqrt{7}-240}{96}
İndi ± minus olsa x=\frac{-240±240\sqrt{7}}{96} tənliyini həll edin. -240 ədədindən 240\sqrt{7} ədədini çıxın.
x=\frac{-5\sqrt{7}-5}{2}
-240-240\sqrt{7} ədədini 96 ədədinə bölün.
48x^{2}+240x-1800=48\left(x-\frac{5\sqrt{7}-5}{2}\right)\left(x-\frac{-5\sqrt{7}-5}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün \frac{-5+5\sqrt{7}}{2} və x_{2} üçün \frac{-5-5\sqrt{7}}{2} əvəzləyici.