Əsas məzmuna keç
x üçün həll et
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

a+b=4 ab=4\times 1=4
Tənliyi həll etmək üçün qruplaşdırmaqla sol əl tərəfi əmsallarına ayırın. Əvvəlcə sol əl tərəf 4x^{2}+ax+bx+1 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
1,4 2,2
ab müsbət olduğu üçün a və b ədədinin eyni işarəsi var. a+b müsbət olduğu üçün a və b hər ikisi müsbətdir. 4 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
1+4=5 2+2=4
Hər cüt üçün cəmi hesablayın.
a=2 b=2
Həll 4 cəmini verən cütdür.
\left(4x^{2}+2x\right)+\left(2x+1\right)
4x^{2}+4x+1 \left(4x^{2}+2x\right)+\left(2x+1\right) kimi yenidən yazılsın.
2x\left(2x+1\right)+2x+1
4x^{2}+2x-də 2x vurulanlara ayrılsın.
\left(2x+1\right)\left(2x+1\right)
Paylayıcı xüsusiyyətini istifadə etməklə 2x+1 ümumi ifadəsi vurulanlara ayrılsın.
\left(2x+1\right)^{2}
Binom kvadratı kimi yenidən yazın.
x=-\frac{1}{2}
Tənliyin həllini tapmaq üçün 2x+1=0 ifadəsini həll edin.
4x^{2}+4x+1=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-4±\sqrt{4^{2}-4\times 4}}{2\times 4}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 4, b üçün 4 və c üçün 1 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-4±\sqrt{16-4\times 4}}{2\times 4}
Kvadrat 4.
x=\frac{-4±\sqrt{16-16}}{2\times 4}
-4 ədədini 4 dəfə vurun.
x=\frac{-4±\sqrt{0}}{2\times 4}
16 -16 qrupuna əlavə edin.
x=-\frac{4}{2\times 4}
0 kvadrat kökünü alın.
x=-\frac{4}{8}
2 ədədini 4 dəfə vurun.
x=-\frac{1}{2}
4 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-4}{8} kəsrini azaldın.
4x^{2}+4x+1=0
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
4x^{2}+4x+1-1=-1
Tənliyin hər iki tərəfindən 1 çıxın.
4x^{2}+4x=-1
1 ədədindən özünün çıxılması 0-a bərabərdir.
\frac{4x^{2}+4x}{4}=-\frac{1}{4}
Hər iki tərəfi 4 rəqəminə bölün.
x^{2}+\frac{4}{4}x=-\frac{1}{4}
4 ədədinə bölmək 4 ədədinə vurmanı qaytarır.
x^{2}+x=-\frac{1}{4}
4 ədədini 4 ədədinə bölün.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
x həddinin əmsalı olan 1 ədədini \frac{1}{2} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə \frac{1}{2} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}+x+\frac{1}{4}=\frac{-1+1}{4}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla \frac{1}{2} kvadratlaşdırın.
x^{2}+x+\frac{1}{4}=0
Ortaq məxrəci tapmaqla və surətləri əlavə etməklə -\frac{1}{4} kəsrini \frac{1}{4} kəsrinə əlavə edin. Daha sonra mümkündürsə, kəsri ən aşağı həddə qədər azaldın.
\left(x+\frac{1}{2}\right)^{2}=0
Faktor x^{2}+x+\frac{1}{4}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{0}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+\frac{1}{2}=0 x+\frac{1}{2}=0
Sadələşdirin.
x=-\frac{1}{2} x=-\frac{1}{2}
Tənliyin hər iki tərəfindən \frac{1}{2} çıxın.
x=-\frac{1}{2}
Tənlik indi həll edilib. Həllər eynidir.