Əsas məzmuna keç
Amil
Tick mark Image
Qiymətləndir
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

a+b=-14 ab=3\left(-5\right)=-15
Qruplaşdırmaqla ifadəni əmsallarına ayırın. Əvvəlcə ifadə 3x^{2}+ax+bx-5 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
1,-15 3,-5
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b mənfi olduğu üçün mənfi rəqəmin müsbətdən daha böyük mütləq qiyməti var. -15 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
1-15=-14 3-5=-2
Hər cüt üçün cəmi hesablayın.
a=-15 b=1
Həll -14 cəmini verən cütdür.
\left(3x^{2}-15x\right)+\left(x-5\right)
3x^{2}-14x-5 \left(3x^{2}-15x\right)+\left(x-5\right) kimi yenidən yazılsın.
3x\left(x-5\right)+x-5
3x^{2}-15x-də 3x vurulanlara ayrılsın.
\left(x-5\right)\left(3x+1\right)
Paylayıcı xüsusiyyətini istifadə etməklə x-5 ümumi ifadəsi vurulanlara ayrılsın.
3x^{2}-14x-5=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 3\left(-5\right)}}{2\times 3}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 3\left(-5\right)}}{2\times 3}
Kvadrat -14.
x=\frac{-\left(-14\right)±\sqrt{196-12\left(-5\right)}}{2\times 3}
-4 ədədini 3 dəfə vurun.
x=\frac{-\left(-14\right)±\sqrt{196+60}}{2\times 3}
-12 ədədini -5 dəfə vurun.
x=\frac{-\left(-14\right)±\sqrt{256}}{2\times 3}
196 60 qrupuna əlavə edin.
x=\frac{-\left(-14\right)±16}{2\times 3}
256 kvadrat kökünü alın.
x=\frac{14±16}{2\times 3}
-14 rəqəminin əksi budur: 14.
x=\frac{14±16}{6}
2 ədədini 3 dəfə vurun.
x=\frac{30}{6}
İndi ± plyus olsa x=\frac{14±16}{6} tənliyini həll edin. 14 16 qrupuna əlavə edin.
x=5
30 ədədini 6 ədədinə bölün.
x=-\frac{2}{6}
İndi ± minus olsa x=\frac{14±16}{6} tənliyini həll edin. 14 ədədindən 16 ədədini çıxın.
x=-\frac{1}{3}
2 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-2}{6} kəsrini azaldın.
3x^{2}-14x-5=3\left(x-5\right)\left(x-\left(-\frac{1}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün 5 və x_{2} üçün -\frac{1}{3} əvəzləyici.
3x^{2}-14x-5=3\left(x-5\right)\left(x+\frac{1}{3}\right)
p-\left(-q\right) formasının bütün ifadələrini p+q ifadəsinə sadələşdirin.
3x^{2}-14x-5=3\left(x-5\right)\times \frac{3x+1}{3}
Ortaq məxrəci tapmaqla və surətləri əlavə etməklə \frac{1}{3} kəsrini x kəsrinə əlavə edin. Daha sonra mümkündürsə, kəsri ən aşağı həddə qədər azaldın.
3x^{2}-14x-5=\left(x-5\right)\left(3x+1\right)
3 və 3 3 ən böyük ortaq əmsalı kənarlaşdırın.