Əsas məzmuna keç
r üçün həll et
Tick mark Image
r üçün həll et (complex solution)
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\frac{293}{336}=e^{r\times 39}
Hər iki tərəfi 336 rəqəminə bölün.
e^{r\times 39}=\frac{293}{336}
Tərəfləri elə dəyişdirin ki, bütün dəyişən hədlər sol tərəfdə olsun.
e^{39r}=\frac{293}{336}
Tənliyi həll etmək üçün eksponentlər və loqarifmalar qaydasından istifadə edin.
\log(e^{39r})=\log(\frac{293}{336})
Tənliyin hər iki tərəfinin loqarifmasını aparın.
39r\log(e)=\log(\frac{293}{336})
Qüvvətə yüksəldilmiş ədədin loqarifması ədədin loqarifmasının qüvvət dövrünə bərabədir.
39r=\frac{\log(\frac{293}{336})}{\log(e)}
Hər iki tərəfi \log(e) rəqəminə bölün.
39r=\log_{e}\left(\frac{293}{336}\right)
Baza düsturunun dəyişdirilməsi ilə \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
r=\frac{\ln(\frac{293}{336})}{39}
Hər iki tərəfi 39 rəqəminə bölün.