y üçün həll et (complex solution)
y=\sqrt{7}-1\approx 1,645751311
y=-\left(\sqrt{7}+1\right)\approx -3,645751311
y üçün həll et
y=\sqrt{7}-1\approx 1,645751311
y=-\sqrt{7}-1\approx -3,645751311
Qrafik
Paylaş
Panoya köçürüldü
y^{2}+2y-6=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
y=\frac{-2±\sqrt{2^{2}-4\left(-6\right)}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün 2 və c üçün -6 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
y=\frac{-2±\sqrt{4-4\left(-6\right)}}{2}
Kvadrat 2.
y=\frac{-2±\sqrt{4+24}}{2}
-4 ədədini -6 dəfə vurun.
y=\frac{-2±\sqrt{28}}{2}
4 24 qrupuna əlavə edin.
y=\frac{-2±2\sqrt{7}}{2}
28 kvadrat kökünü alın.
y=\frac{2\sqrt{7}-2}{2}
İndi ± plyus olsa y=\frac{-2±2\sqrt{7}}{2} tənliyini həll edin. -2 2\sqrt{7} qrupuna əlavə edin.
y=\sqrt{7}-1
-2+2\sqrt{7} ədədini 2 ədədinə bölün.
y=\frac{-2\sqrt{7}-2}{2}
İndi ± minus olsa y=\frac{-2±2\sqrt{7}}{2} tənliyini həll edin. -2 ədədindən 2\sqrt{7} ədədini çıxın.
y=-\sqrt{7}-1
-2-2\sqrt{7} ədədini 2 ədədinə bölün.
y=\sqrt{7}-1 y=-\sqrt{7}-1
Tənlik indi həll edilib.
y^{2}+2y-6=0
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
y^{2}+2y-6-\left(-6\right)=-\left(-6\right)
Tənliyin hər iki tərəfinə 6 əlavə edin.
y^{2}+2y=-\left(-6\right)
-6 ədədindən özünün çıxılması 0-a bərabərdir.
y^{2}+2y=6
0 ədədindən -6 ədədini çıxın.
y^{2}+2y+1^{2}=6+1^{2}
x həddinin əmsalı olan 2 ədədini 1 almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə 1 kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
y^{2}+2y+1=6+1
Kvadrat 1.
y^{2}+2y+1=7
6 1 qrupuna əlavə edin.
\left(y+1\right)^{2}=7
Faktor y^{2}+2y+1. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(y+1\right)^{2}}=\sqrt{7}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
y+1=\sqrt{7} y+1=-\sqrt{7}
Sadələşdirin.
y=\sqrt{7}-1 y=-\sqrt{7}-1
Tənliyin hər iki tərəfindən 1 çıxın.
y^{2}+2y-6=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
y=\frac{-2±\sqrt{2^{2}-4\left(-6\right)}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün 2 və c üçün -6 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
y=\frac{-2±\sqrt{4-4\left(-6\right)}}{2}
Kvadrat 2.
y=\frac{-2±\sqrt{4+24}}{2}
-4 ədədini -6 dəfə vurun.
y=\frac{-2±\sqrt{28}}{2}
4 24 qrupuna əlavə edin.
y=\frac{-2±2\sqrt{7}}{2}
28 kvadrat kökünü alın.
y=\frac{2\sqrt{7}-2}{2}
İndi ± plyus olsa y=\frac{-2±2\sqrt{7}}{2} tənliyini həll edin. -2 2\sqrt{7} qrupuna əlavə edin.
y=\sqrt{7}-1
-2+2\sqrt{7} ədədini 2 ədədinə bölün.
y=\frac{-2\sqrt{7}-2}{2}
İndi ± minus olsa y=\frac{-2±2\sqrt{7}}{2} tənliyini həll edin. -2 ədədindən 2\sqrt{7} ədədini çıxın.
y=-\sqrt{7}-1
-2-2\sqrt{7} ədədini 2 ədədinə bölün.
y=\sqrt{7}-1 y=-\sqrt{7}-1
Tənlik indi həll edilib.
y^{2}+2y-6=0
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
y^{2}+2y-6-\left(-6\right)=-\left(-6\right)
Tənliyin hər iki tərəfinə 6 əlavə edin.
y^{2}+2y=-\left(-6\right)
-6 ədədindən özünün çıxılması 0-a bərabərdir.
y^{2}+2y=6
0 ədədindən -6 ədədini çıxın.
y^{2}+2y+1^{2}=6+1^{2}
x həddinin əmsalı olan 2 ədədini 1 almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə 1 kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
y^{2}+2y+1=6+1
Kvadrat 1.
y^{2}+2y+1=7
6 1 qrupuna əlavə edin.
\left(y+1\right)^{2}=7
Faktor y^{2}+2y+1. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(y+1\right)^{2}}=\sqrt{7}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
y+1=\sqrt{7} y+1=-\sqrt{7}
Sadələşdirin.
y=\sqrt{7}-1 y=-\sqrt{7}-1
Tənliyin hər iki tərəfindən 1 çıxın.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}