Əsas məzmuna keç
x üçün həll et
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

2x^{2}+3x-12+7=0
7 hər iki tərəfə əlavə edin.
2x^{2}+3x-5=0
-5 almaq üçün -12 və 7 toplayın.
a+b=3 ab=2\left(-5\right)=-10
Tənliyi həll etmək üçün qruplaşdırmaqla sol əl tərəfi əmsallarına ayırın. Əvvəlcə sol əl tərəf 2x^{2}+ax+bx-5 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,10 -2,5
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b müsbət olduğu üçün müsbət rəqəmin mənfidən daha böyük mütləq qiyməti var. -10 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1+10=9 -2+5=3
Hər cüt üçün cəmi hesablayın.
a=-2 b=5
Həll 3 cəmini verən cütdür.
\left(2x^{2}-2x\right)+\left(5x-5\right)
2x^{2}+3x-5 \left(2x^{2}-2x\right)+\left(5x-5\right) kimi yenidən yazılsın.
2x\left(x-1\right)+5\left(x-1\right)
Birinci qrupda 2x ədədini və ikinci qrupda isə 5 ədədini vurub çıxarın.
\left(x-1\right)\left(2x+5\right)
Paylayıcı xüsusiyyətini istifadə etməklə x-1 ümumi ifadəsi vurulanlara ayrılsın.
x=1 x=-\frac{5}{2}
Tənliyin həllərini tapmaq üçün x-1=0 və 2x+5=0 ifadələrini həll edin.
2x^{2}+3x-12=-7
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
2x^{2}+3x-12-\left(-7\right)=-7-\left(-7\right)
Tənliyin hər iki tərəfinə 7 əlavə edin.
2x^{2}+3x-12-\left(-7\right)=0
-7 ədədindən özünün çıxılması 0-a bərabərdir.
2x^{2}+3x-5=0
-12 ədədindən -7 ədədini çıxın.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 2, b üçün 3 və c üçün -5 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Kvadrat 3.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
-4 ədədini 2 dəfə vurun.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
-8 ədədini -5 dəfə vurun.
x=\frac{-3±\sqrt{49}}{2\times 2}
9 40 qrupuna əlavə edin.
x=\frac{-3±7}{2\times 2}
49 kvadrat kökünü alın.
x=\frac{-3±7}{4}
2 ədədini 2 dəfə vurun.
x=\frac{4}{4}
İndi ± plyus olsa x=\frac{-3±7}{4} tənliyini həll edin. -3 7 qrupuna əlavə edin.
x=1
4 ədədini 4 ədədinə bölün.
x=-\frac{10}{4}
İndi ± minus olsa x=\frac{-3±7}{4} tənliyini həll edin. -3 ədədindən 7 ədədini çıxın.
x=-\frac{5}{2}
2 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-10}{4} kəsrini azaldın.
x=1 x=-\frac{5}{2}
Tənlik indi həll edilib.
2x^{2}+3x-12=-7
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
2x^{2}+3x-12-\left(-12\right)=-7-\left(-12\right)
Tənliyin hər iki tərəfinə 12 əlavə edin.
2x^{2}+3x=-7-\left(-12\right)
-12 ədədindən özünün çıxılması 0-a bərabərdir.
2x^{2}+3x=5
-7 ədədindən -12 ədədini çıxın.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
Hər iki tərəfi 2 rəqəminə bölün.
x^{2}+\frac{3}{2}x=\frac{5}{2}
2 ədədinə bölmək 2 ədədinə vurmanı qaytarır.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
x həddinin əmsalı olan \frac{3}{2} ədədini \frac{3}{4} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə \frac{3}{4} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla \frac{3}{4} kvadratlaşdırın.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Ortaq məxrəci tapmaqla və surətləri əlavə etməklə \frac{5}{2} kəsrini \frac{9}{16} kəsrinə əlavə edin. Daha sonra mümkündürsə, kəsri ən aşağı həddə qədər azaldın.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
Faktor x^{2}+\frac{3}{2}x+\frac{9}{16}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Sadələşdirin.
x=1 x=-\frac{5}{2}
Tənliyin hər iki tərəfindən \frac{3}{4} çıxın.