Əsas məzmuna keç
Amil
Tick mark Image
Qiymətləndir
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

p+q=5 pq=2\left(-12\right)=-24
Qruplaşdırmaqla ifadəni əmsallarına ayırın. Əvvəlcə ifadə 2a^{2}+pa+qa-12 kimi yazılmalıdır. p və q ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,24 -2,12 -3,8 -4,6
pq mənfi olduğu üçün p və q ədədlərinin əks işarələri var. p+q müsbət olduğu üçün müsbət rəqəmin mənfidən daha böyük mütləq qiyməti var. -24 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Hər cüt üçün cəmi hesablayın.
p=-3 q=8
Həll 5 cəmini verən cütdür.
\left(2a^{2}-3a\right)+\left(8a-12\right)
2a^{2}+5a-12 \left(2a^{2}-3a\right)+\left(8a-12\right) kimi yenidən yazılsın.
a\left(2a-3\right)+4\left(2a-3\right)
Birinci qrupda a ədədini və ikinci qrupda isə 4 ədədini vurub çıxarın.
\left(2a-3\right)\left(a+4\right)
Paylayıcı xüsusiyyətini istifadə etməklə 2a-3 ümumi ifadəsi vurulanlara ayrılsın.
2a^{2}+5a-12=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
a=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
a=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
Kvadrat 5.
a=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
-4 ədədini 2 dəfə vurun.
a=\frac{-5±\sqrt{25+96}}{2\times 2}
-8 ədədini -12 dəfə vurun.
a=\frac{-5±\sqrt{121}}{2\times 2}
25 96 qrupuna əlavə edin.
a=\frac{-5±11}{2\times 2}
121 kvadrat kökünü alın.
a=\frac{-5±11}{4}
2 ədədini 2 dəfə vurun.
a=\frac{6}{4}
İndi ± plyus olsa a=\frac{-5±11}{4} tənliyini həll edin. -5 11 qrupuna əlavə edin.
a=\frac{3}{2}
2 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{6}{4} kəsrini azaldın.
a=-\frac{16}{4}
İndi ± minus olsa a=\frac{-5±11}{4} tənliyini həll edin. -5 ədədindən 11 ədədini çıxın.
a=-4
-16 ədədini 4 ədədinə bölün.
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün \frac{3}{2} və x_{2} üçün -4 əvəzləyici.
2a^{2}+5a-12=2\left(a-\frac{3}{2}\right)\left(a+4\right)
p-\left(-q\right) formasının bütün ifadələrini p+q ifadəsinə sadələşdirin.
2a^{2}+5a-12=2\times \frac{2a-3}{2}\left(a+4\right)
Ortaq məxrəci tapmaqla və surətləri çıxmaqla a kəsrindən \frac{3}{2} kəsrini çıxın. Daha sonra mümkündürsə, kəsri ən aşağı həddə qədər azaldın.
2a^{2}+5a-12=\left(2a-3\right)\left(a+4\right)
2 və 2 2 ən böyük ortaq əmsalı kənarlaşdırın.