Əsas məzmuna keç
x üçün həll et
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

x\left(1+3x\right)=0
x faktorlara ayırın.
x=0 x=-\frac{1}{3}
Tənliyin həllərini tapmaq üçün x=0 və 1+3x=0 ifadələrini həll edin.
3x^{2}+x=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-1±\sqrt{1^{2}}}{2\times 3}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 3, b üçün 1 və c üçün 0 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-1±1}{2\times 3}
1^{2} kvadrat kökünü alın.
x=\frac{-1±1}{6}
2 ədədini 3 dəfə vurun.
x=\frac{0}{6}
İndi ± plyus olsa x=\frac{-1±1}{6} tənliyini həll edin. -1 1 qrupuna əlavə edin.
x=0
0 ədədini 6 ədədinə bölün.
x=-\frac{2}{6}
İndi ± minus olsa x=\frac{-1±1}{6} tənliyini həll edin. -1 ədədindən 1 ədədini çıxın.
x=-\frac{1}{3}
2 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-2}{6} kəsrini azaldın.
x=0 x=-\frac{1}{3}
Tənlik indi həll edilib.
3x^{2}+x=0
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
\frac{3x^{2}+x}{3}=\frac{0}{3}
Hər iki tərəfi 3 rəqəminə bölün.
x^{2}+\frac{1}{3}x=\frac{0}{3}
3 ədədinə bölmək 3 ədədinə vurmanı qaytarır.
x^{2}+\frac{1}{3}x=0
0 ədədini 3 ədədinə bölün.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\left(\frac{1}{6}\right)^{2}
x həddinin əmsalı olan \frac{1}{3} ədədini \frac{1}{6} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə \frac{1}{6} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla \frac{1}{6} kvadratlaşdırın.
\left(x+\frac{1}{6}\right)^{2}=\frac{1}{36}
Faktor x^{2}+\frac{1}{3}x+\frac{1}{36}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+\frac{1}{6}=\frac{1}{6} x+\frac{1}{6}=-\frac{1}{6}
Sadələşdirin.
x=0 x=-\frac{1}{3}
Tənliyin hər iki tərəfindən \frac{1}{6} çıxın.