Amil
7t\left(2t+3\right)
Qiymətləndir
7t\left(2t+3\right)
Paylaş
Panoya köçürüldü
7\left(2t^{2}+3t\right)
7 faktorlara ayırın.
t\left(2t+3\right)
2t^{2}+3t seçimini qiymətləndirin. t faktorlara ayırın.
7t\left(2t+3\right)
Tam vuruqlara ayrılan ifadəni yenidən yazın.
14t^{2}+21t=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
t=\frac{-21±\sqrt{21^{2}}}{2\times 14}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
t=\frac{-21±21}{2\times 14}
21^{2} kvadrat kökünü alın.
t=\frac{-21±21}{28}
2 ədədini 14 dəfə vurun.
t=\frac{0}{28}
İndi ± plyus olsa t=\frac{-21±21}{28} tənliyini həll edin. -21 21 qrupuna əlavə edin.
t=0
0 ədədini 28 ədədinə bölün.
t=-\frac{42}{28}
İndi ± minus olsa t=\frac{-21±21}{28} tənliyini həll edin. -21 ədədindən 21 ədədini çıxın.
t=-\frac{3}{2}
14 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-42}{28} kəsrini azaldın.
14t^{2}+21t=14t\left(t-\left(-\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün 0 və x_{2} üçün -\frac{3}{2} əvəzləyici.
14t^{2}+21t=14t\left(t+\frac{3}{2}\right)
p-\left(-q\right) formasının bütün ifadələrini p+q ifadəsinə sadələşdirin.
14t^{2}+21t=14t\times \frac{2t+3}{2}
Ortaq məxrəci tapmaqla və surətləri əlavə etməklə \frac{3}{2} kəsrini t kəsrinə əlavə edin. Daha sonra mümkündürsə, kəsri ən aşağı həddə qədər azaldın.
14t^{2}+21t=7t\left(2t+3\right)
14 və 2 2 ən böyük ortaq əmsalı kənarlaşdırın.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}