x üçün həll et
x=-\frac{73-5y}{y+11}
y\neq -11
y üçün həll et
y=-\frac{11x+73}{x-5}
x\neq 5
Qrafik
Paylaş
Panoya köçürüldü
11x+xy+73=5y
5y hər iki tərəfə əlavə edin. Sıfırın üzərinə istənilən şeyi gəldikdə özü alınır.
11x+xy=5y-73
Hər iki tərəfdən 73 çıxın.
\left(11+y\right)x=5y-73
x ehtiva edən bütün həddləri birləşdirin.
\left(y+11\right)x=5y-73
Tənlik standart formadadır.
\frac{\left(y+11\right)x}{y+11}=\frac{5y-73}{y+11}
Hər iki tərəfi 11+y rəqəminə bölün.
x=\frac{5y-73}{y+11}
11+y ədədinə bölmək 11+y ədədinə vurmanı qaytarır.
xy-5y+73=-11x
Hər iki tərəfdən 11x çıxın. Sıfırdan istənilən şeyi çıxdıqda mənfisi alınır.
xy-5y=-11x-73
Hər iki tərəfdən 73 çıxın.
\left(x-5\right)y=-11x-73
y ehtiva edən bütün həddləri birləşdirin.
\frac{\left(x-5\right)y}{x-5}=\frac{-11x-73}{x-5}
Hər iki tərəfi x-5 rəqəminə bölün.
y=\frac{-11x-73}{x-5}
x-5 ədədinə bölmək x-5 ədədinə vurmanı qaytarır.
y=-\frac{11x+73}{x-5}
-11x-73 ədədini x-5 ədədinə bölün.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}