Amil
-x\left(x+1\right)
Qiymətləndir
-x\left(x+1\right)
Qrafik
Paylaş
Panoya köçürüldü
x\left(-1-x\right)
x faktorlara ayırın.
-x^{2}-x=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\left(-1\right)}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-\left(-1\right)±1}{2\left(-1\right)}
1 kvadrat kökünü alın.
x=\frac{1±1}{2\left(-1\right)}
-1 rəqəminin əksi budur: 1.
x=\frac{1±1}{-2}
2 ədədini -1 dəfə vurun.
x=\frac{2}{-2}
İndi ± plyus olsa x=\frac{1±1}{-2} tənliyini həll edin. 1 1 qrupuna əlavə edin.
x=-1
2 ədədini -2 ədədinə bölün.
x=\frac{0}{-2}
İndi ± minus olsa x=\frac{1±1}{-2} tənliyini həll edin. 1 ədədindən 1 ədədini çıxın.
x=0
0 ədədini -2 ədədinə bölün.
-x^{2}-x=-\left(x-\left(-1\right)\right)x
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün -1 və x_{2} üçün 0 əvəzləyici.
-x^{2}-x=-\left(x+1\right)x
p-\left(-q\right) formasının bütün ifadələrini p+q ifadəsinə sadələşdirin.
-x-x^{2}
Sıfırın üzərinə istənilən şeyi gəldikdə özü alınır.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}