Əsas məzmuna keç
Amil
Tick mark Image
Qiymətləndir
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

a+b=-2 ab=-3=-3
Qruplaşdırmaqla ifadəni əmsallarına ayırın. Əvvəlcə ifadə -3x^{2}+ax+bx+1 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
a=1 b=-3
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b mənfi olduğu üçün mənfi rəqəmin müsbətdən daha böyük mütləq qiyməti var. Yalnız belə cüt sistem həllidir.
\left(-3x^{2}+x\right)+\left(-3x+1\right)
-3x^{2}-2x+1 \left(-3x^{2}+x\right)+\left(-3x+1\right) kimi yenidən yazılsın.
-x\left(3x-1\right)-\left(3x-1\right)
Birinci qrupda -x ədədini və ikinci qrupda isə -1 ədədini vurub çıxarın.
\left(3x-1\right)\left(-x-1\right)
Paylayıcı xüsusiyyətini istifadə etməklə 3x-1 ümumi ifadəsi vurulanlara ayrılsın.
-3x^{2}-2x+1=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2\left(-3\right)}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2\left(-3\right)}
Kvadrat -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-3\right)}
-4 ədədini -3 dəfə vurun.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-3\right)}
4 12 qrupuna əlavə edin.
x=\frac{-\left(-2\right)±4}{2\left(-3\right)}
16 kvadrat kökünü alın.
x=\frac{2±4}{2\left(-3\right)}
-2 rəqəminin əksi budur: 2.
x=\frac{2±4}{-6}
2 ədədini -3 dəfə vurun.
x=\frac{6}{-6}
İndi ± plyus olsa x=\frac{2±4}{-6} tənliyini həll edin. 2 4 qrupuna əlavə edin.
x=-1
6 ədədini -6 ədədinə bölün.
x=-\frac{2}{-6}
İndi ± minus olsa x=\frac{2±4}{-6} tənliyini həll edin. 2 ədədindən 4 ədədini çıxın.
x=\frac{1}{3}
2 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-2}{-6} kəsrini azaldın.
-3x^{2}-2x+1=-3\left(x-\left(-1\right)\right)\left(x-\frac{1}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün -1 və x_{2} üçün \frac{1}{3} əvəzləyici.
-3x^{2}-2x+1=-3\left(x+1\right)\left(x-\frac{1}{3}\right)
p-\left(-q\right) formasının bütün ifadələrini p+q ifadəsinə sadələşdirin.
-3x^{2}-2x+1=-3\left(x+1\right)\times \frac{-3x+1}{-3}
Ortaq məxrəci tapmaqla və surətləri çıxmaqla x kəsrindən \frac{1}{3} kəsrini çıxın. Daha sonra mümkündürsə, kəsri ən aşağı həddə qədər azaldın.
-3x^{2}-2x+1=\left(x+1\right)\left(-3x+1\right)
-3 və 3 3 ən böyük ortaq əmsalı kənarlaşdırın.