Əsas məzmuna keç
x üçün həll et
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

-x^{2}-4x=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-1\right)}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün -1, b üçün -4 və c üçün 0 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-\left(-4\right)±4}{2\left(-1\right)}
\left(-4\right)^{2} kvadrat kökünü alın.
x=\frac{4±4}{2\left(-1\right)}
-4 rəqəminin əksi budur: 4.
x=\frac{4±4}{-2}
2 ədədini -1 dəfə vurun.
x=\frac{8}{-2}
İndi ± plyus olsa x=\frac{4±4}{-2} tənliyini həll edin. 4 4 qrupuna əlavə edin.
x=-4
8 ədədini -2 ədədinə bölün.
x=\frac{0}{-2}
İndi ± minus olsa x=\frac{4±4}{-2} tənliyini həll edin. 4 ədədindən 4 ədədini çıxın.
x=0
0 ədədini -2 ədədinə bölün.
x=-4 x=0
Tənlik indi həll edilib.
-x^{2}-4x=0
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
\frac{-x^{2}-4x}{-1}=\frac{0}{-1}
Hər iki tərəfi -1 rəqəminə bölün.
x^{2}+\left(-\frac{4}{-1}\right)x=\frac{0}{-1}
-1 ədədinə bölmək -1 ədədinə vurmanı qaytarır.
x^{2}+4x=\frac{0}{-1}
-4 ədədini -1 ədədinə bölün.
x^{2}+4x=0
0 ədədini -1 ədədinə bölün.
x^{2}+4x+2^{2}=2^{2}
x həddinin əmsalı olan 4 ədədini 2 almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə 2 kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}+4x+4=4
Kvadrat 2.
\left(x+2\right)^{2}=4
Faktor x^{2}+4x+4. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x+2\right)^{2}}=\sqrt{4}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+2=2 x+2=-2
Sadələşdirin.
x=0 x=-4
Tənliyin hər iki tərəfindən 2 çıxın.