Əsas məzmuna keç
Amil
Tick mark Image
Qiymətləndir
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

3\left(-x^{2}-4x+12\right)
3 faktorlara ayırın.
a+b=-4 ab=-12=-12
-x^{2}-4x+12 seçimini qiymətləndirin. Qruplaşdırmaqla ifadəni əmsallarına ayırın. Əvvəlcə ifadə -x^{2}+ax+bx+12 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
1,-12 2,-6 3,-4
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b mənfi olduğu üçün mənfi rəqəmin müsbətdən daha böyük mütləq qiyməti var. -12 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
1-12=-11 2-6=-4 3-4=-1
Hər cüt üçün cəmi hesablayın.
a=2 b=-6
Həll -4 cəmini verən cütdür.
\left(-x^{2}+2x\right)+\left(-6x+12\right)
-x^{2}-4x+12 \left(-x^{2}+2x\right)+\left(-6x+12\right) kimi yenidən yazılsın.
x\left(-x+2\right)+6\left(-x+2\right)
Birinci qrupda x ədədini və ikinci qrupda isə 6 ədədini vurub çıxarın.
\left(-x+2\right)\left(x+6\right)
Paylayıcı xüsusiyyətini istifadə etməklə -x+2 ümumi ifadəsi vurulanlara ayrılsın.
3\left(-x+2\right)\left(x+6\right)
Tam vuruqlara ayrılan ifadəni yenidən yazın.
-3x^{2}-12x+36=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 36}}{2\left(-3\right)}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 36}}{2\left(-3\right)}
Kvadrat -12.
x=\frac{-\left(-12\right)±\sqrt{144+12\times 36}}{2\left(-3\right)}
-4 ədədini -3 dəfə vurun.
x=\frac{-\left(-12\right)±\sqrt{144+432}}{2\left(-3\right)}
12 ədədini 36 dəfə vurun.
x=\frac{-\left(-12\right)±\sqrt{576}}{2\left(-3\right)}
144 432 qrupuna əlavə edin.
x=\frac{-\left(-12\right)±24}{2\left(-3\right)}
576 kvadrat kökünü alın.
x=\frac{12±24}{2\left(-3\right)}
-12 rəqəminin əksi budur: 12.
x=\frac{12±24}{-6}
2 ədədini -3 dəfə vurun.
x=\frac{36}{-6}
İndi ± plyus olsa x=\frac{12±24}{-6} tənliyini həll edin. 12 24 qrupuna əlavə edin.
x=-6
36 ədədini -6 ədədinə bölün.
x=-\frac{12}{-6}
İndi ± minus olsa x=\frac{12±24}{-6} tənliyini həll edin. 12 ədədindən 24 ədədini çıxın.
x=2
-12 ədədini -6 ədədinə bölün.
-3x^{2}-12x+36=-3\left(x-\left(-6\right)\right)\left(x-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün -6 və x_{2} üçün 2 əvəzləyici.
-3x^{2}-12x+36=-3\left(x+6\right)\left(x-2\right)
p-\left(-q\right) formasının bütün ifadələrini p+q ifadəsinə sadələşdirin.