x üçün həll et
x=3\sqrt{28239}+11\approx 515,133910782
x=11-3\sqrt{28239}\approx -493,133910782
Qrafik
Paylaş
Panoya köçürüldü
\left(x-35\right)\left(x+13\right)=253575
13 almaq üçün 38 25 çıxın.
x^{2}-22x-455=253575
x-35 ədədini x+13 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
x^{2}-22x-455-253575=0
Hər iki tərəfdən 253575 çıxın.
x^{2}-22x-254030=0
-254030 almaq üçün -455 253575 çıxın.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-254030\right)}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün -22 və c üçün -254030 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-\left(-22\right)±\sqrt{484-4\left(-254030\right)}}{2}
Kvadrat -22.
x=\frac{-\left(-22\right)±\sqrt{484+1016120}}{2}
-4 ədədini -254030 dəfə vurun.
x=\frac{-\left(-22\right)±\sqrt{1016604}}{2}
484 1016120 qrupuna əlavə edin.
x=\frac{-\left(-22\right)±6\sqrt{28239}}{2}
1016604 kvadrat kökünü alın.
x=\frac{22±6\sqrt{28239}}{2}
-22 rəqəminin əksi budur: 22.
x=\frac{6\sqrt{28239}+22}{2}
İndi ± plyus olsa x=\frac{22±6\sqrt{28239}}{2} tənliyini həll edin. 22 6\sqrt{28239} qrupuna əlavə edin.
x=3\sqrt{28239}+11
22+6\sqrt{28239} ədədini 2 ədədinə bölün.
x=\frac{22-6\sqrt{28239}}{2}
İndi ± minus olsa x=\frac{22±6\sqrt{28239}}{2} tənliyini həll edin. 22 ədədindən 6\sqrt{28239} ədədini çıxın.
x=11-3\sqrt{28239}
22-6\sqrt{28239} ədədini 2 ədədinə bölün.
x=3\sqrt{28239}+11 x=11-3\sqrt{28239}
Tənlik indi həll edilib.
\left(x-35\right)\left(x+13\right)=253575
13 almaq üçün 38 25 çıxın.
x^{2}-22x-455=253575
x-35 ədədini x+13 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
x^{2}-22x=253575+455
455 hər iki tərəfə əlavə edin.
x^{2}-22x=254030
254030 almaq üçün 253575 və 455 toplayın.
x^{2}-22x+\left(-11\right)^{2}=254030+\left(-11\right)^{2}
x həddinin əmsalı olan -22 ədədini -11 almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə -11 kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}-22x+121=254030+121
Kvadrat -11.
x^{2}-22x+121=254151
254030 121 qrupuna əlavə edin.
\left(x-11\right)^{2}=254151
Faktor x^{2}-22x+121. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x-11\right)^{2}}=\sqrt{254151}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x-11=3\sqrt{28239} x-11=-3\sqrt{28239}
Sadələşdirin.
x=3\sqrt{28239}+11 x=11-3\sqrt{28239}
Tənliyin hər iki tərəfinə 11 əlavə edin.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}