x üçün həll et
x = \frac{17}{2} = 8\frac{1}{2} = 8,5
x=0
Qrafik
Paylaş
Panoya köçürüldü
17x-30-2x^{2}+30=0
6-x ədədini 2x-5 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
17x-2x^{2}=0
0 almaq üçün -30 və 30 toplayın.
x\left(17-2x\right)=0
x faktorlara ayırın.
x=0 x=\frac{17}{2}
Tənliyin həllərini tapmaq üçün x=0 və 17-2x=0 ifadələrini həll edin.
17x-30-2x^{2}+30=0
6-x ədədini 2x-5 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
17x-2x^{2}=0
0 almaq üçün -30 və 30 toplayın.
-2x^{2}+17x=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-17±\sqrt{17^{2}}}{2\left(-2\right)}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün -2, b üçün 17 və c üçün 0 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-17±17}{2\left(-2\right)}
17^{2} kvadrat kökünü alın.
x=\frac{-17±17}{-4}
2 ədədini -2 dəfə vurun.
x=\frac{0}{-4}
İndi ± plyus olsa x=\frac{-17±17}{-4} tənliyini həll edin. -17 17 qrupuna əlavə edin.
x=0
0 ədədini -4 ədədinə bölün.
x=-\frac{34}{-4}
İndi ± minus olsa x=\frac{-17±17}{-4} tənliyini həll edin. -17 ədədindən 17 ədədini çıxın.
x=\frac{17}{2}
2 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-34}{-4} kəsrini azaldın.
x=0 x=\frac{17}{2}
Tənlik indi həll edilib.
17x-30-2x^{2}+30=0
6-x ədədini 2x-5 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
17x-2x^{2}=0
0 almaq üçün -30 və 30 toplayın.
-2x^{2}+17x=0
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
\frac{-2x^{2}+17x}{-2}=\frac{0}{-2}
Hər iki tərəfi -2 rəqəminə bölün.
x^{2}+\frac{17}{-2}x=\frac{0}{-2}
-2 ədədinə bölmək -2 ədədinə vurmanı qaytarır.
x^{2}-\frac{17}{2}x=\frac{0}{-2}
17 ədədini -2 ədədinə bölün.
x^{2}-\frac{17}{2}x=0
0 ədədini -2 ədədinə bölün.
x^{2}-\frac{17}{2}x+\left(-\frac{17}{4}\right)^{2}=\left(-\frac{17}{4}\right)^{2}
x həddinin əmsalı olan -\frac{17}{2} ədədini -\frac{17}{4} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə -\frac{17}{4} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}-\frac{17}{2}x+\frac{289}{16}=\frac{289}{16}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla -\frac{17}{4} kvadratlaşdırın.
\left(x-\frac{17}{4}\right)^{2}=\frac{289}{16}
Faktor x^{2}-\frac{17}{2}x+\frac{289}{16}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x-\frac{17}{4}\right)^{2}}=\sqrt{\frac{289}{16}}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x-\frac{17}{4}=\frac{17}{4} x-\frac{17}{4}=-\frac{17}{4}
Sadələşdirin.
x=\frac{17}{2} x=0
Tənliyin hər iki tərəfinə \frac{17}{4} əlavə edin.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}