x üçün həll et
x=9
Qrafik
Paylaş
Panoya köçürüldü
x^{2}-18x+81=0
\left(x-9\right)^{2} genişləndirmək üçün \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ikitərkibli teoremindən istifadə edin.
a+b=-18 ab=81
Tənliyi həll etmək üçün x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) düsturundan istifadə edərək x^{2}-18x+81 tənliyini əmsallarına ayırın. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,-81 -3,-27 -9,-9
ab müsbət olduğu üçün a və b ədədinin eyni işarəsi var. a+b mənfi olduğu üçün a və b hər ikisi mənfidir. 81 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1-81=-82 -3-27=-30 -9-9=-18
Hər cüt üçün cəmi hesablayın.
a=-9 b=-9
Həll -18 cəmini verən cütdür.
\left(x-9\right)\left(x-9\right)
Əldə olunan qiymətlərdən istifadə etməklə vuruqlara ayrılan \left(x+a\right)\left(x+b\right) ifadəsini yenidən yazın.
\left(x-9\right)^{2}
Binom kvadratı kimi yenidən yazın.
x=9
Tənliyin həllini tapmaq üçün x-9=0 ifadəsini həll edin.
x^{2}-18x+81=0
\left(x-9\right)^{2} genişləndirmək üçün \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ikitərkibli teoremindən istifadə edin.
a+b=-18 ab=1\times 81=81
Tənliyi həll etmək üçün qruplaşdırmaqla sol əl tərəfi əmsallarına ayırın. Əvvəlcə sol əl tərəf x^{2}+ax+bx+81 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,-81 -3,-27 -9,-9
ab müsbət olduğu üçün a və b ədədinin eyni işarəsi var. a+b mənfi olduğu üçün a və b hər ikisi mənfidir. 81 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1-81=-82 -3-27=-30 -9-9=-18
Hər cüt üçün cəmi hesablayın.
a=-9 b=-9
Həll -18 cəmini verən cütdür.
\left(x^{2}-9x\right)+\left(-9x+81\right)
x^{2}-18x+81 \left(x^{2}-9x\right)+\left(-9x+81\right) kimi yenidən yazılsın.
x\left(x-9\right)-9\left(x-9\right)
Birinci qrupda x ədədini və ikinci qrupda isə -9 ədədini vurub çıxarın.
\left(x-9\right)\left(x-9\right)
Paylayıcı xüsusiyyətini istifadə etməklə x-9 ümumi ifadəsi vurulanlara ayrılsın.
\left(x-9\right)^{2}
Binom kvadratı kimi yenidən yazın.
x=9
Tənliyin həllini tapmaq üçün x-9=0 ifadəsini həll edin.
x^{2}-18x+81=0
\left(x-9\right)^{2} genişləndirmək üçün \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ikitərkibli teoremindən istifadə edin.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 81}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün -18 və c üçün 81 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 81}}{2}
Kvadrat -18.
x=\frac{-\left(-18\right)±\sqrt{324-324}}{2}
-4 ədədini 81 dəfə vurun.
x=\frac{-\left(-18\right)±\sqrt{0}}{2}
324 -324 qrupuna əlavə edin.
x=-\frac{-18}{2}
0 kvadrat kökünü alın.
x=\frac{18}{2}
-18 rəqəminin əksi budur: 18.
x=9
18 ədədini 2 ədədinə bölün.
\sqrt{\left(x-9\right)^{2}}=\sqrt{0}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x-9=0 x-9=0
Sadələşdirin.
x=9 x=9
Tənliyin hər iki tərəfinə 9 əlavə edin.
x=9
Tənlik indi həll edilib. Həllər eynidir.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}