Əsas məzmuna keç
Qiymətləndir
Tick mark Image
x ilə əlaqədar diferensiallaşdırın
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

\left(x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1\right)\left(x^{2}+\sqrt{3}x+1\right)
x^{2}+1 ədədini x^{2}-\sqrt{3}x+1 vurmaq üçün paylama qanunundan istifadə edin.
\left(x^{2}-\sqrt{3}x\right)x^{4}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1 ədədini x^{2}+\sqrt{3}x+1 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}-\sqrt{3}x ədədini x^{4} vurmaq üçün paylama qanunundan istifadə edin.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}-\sqrt{3}x ədədini \sqrt{3} vurmaq üçün paylama qanunundan istifadə edin.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\times 3\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
\sqrt{3} rəqəminin kvadratı budur: 3.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-3x\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-3 almaq üçün -1 və 3 vurun.
x^{6}-\sqrt{3}x^{5}+\sqrt{3}x^{5}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}\sqrt{3}-3x ədədini x^{3} vurmaq üçün paylama qanunundan istifadə edin.
x^{6}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
0 almaq üçün -\sqrt{3}x^{5} və \sqrt{3}x^{5} birləşdirin.
x^{6}-3x^{4}+2x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
2x^{2} ədədini x^{2}-\sqrt{3}x vurmaq üçün paylama qanunundan istifadə edin.
x^{6}-x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-x^{4} almaq üçün -3x^{4} və 2x^{4} birləşdirin.
x^{6}-2\sqrt{3}x^{3}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
0 almaq üçün -x^{4} və x^{4} birləşdirin.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-\sqrt{3}x^{3} almaq üçün -2\sqrt{3}x^{3} və \sqrt{3}x^{3} birləşdirin.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}-\sqrt{3}x ədədini \sqrt{3} vurmaq üçün paylama qanunundan istifadə edin.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\times 3\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
\sqrt{3} rəqəminin kvadratı budur: 3.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-3x\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-3 almaq üçün -1 və 3 vurun.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\sqrt{3}x^{3}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
x^{2}\sqrt{3}-3x ədədini x vurmaq üçün paylama qanunundan istifadə edin.
x^{6}+2x^{2}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
0 almaq üçün -\sqrt{3}x^{3} və \sqrt{3}x^{3} birləşdirin.
x^{6}-x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
-x^{2} almaq üçün 2x^{2} və -3x^{2} birləşdirin.
x^{6}-\sqrt{3}x+\sqrt{3}x+1
0 almaq üçün -x^{2} və x^{2} birləşdirin.
x^{6}+1
0 almaq üçün -\sqrt{3}x və \sqrt{3}x birləşdirin.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1\right)\left(x^{2}+\sqrt{3}x+1\right))
x^{2}+1 ədədini x^{2}-\sqrt{3}x+1 vurmaq üçün paylama qanunundan istifadə edin.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}-\sqrt{3}x\right)x^{4}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1 ədədini x^{2}+\sqrt{3}x+1 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}-\sqrt{3}x ədədini x^{4} vurmaq üçün paylama qanunundan istifadə edin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}-\sqrt{3}x ədədini \sqrt{3} vurmaq üçün paylama qanunundan istifadə edin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\times 3\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
\sqrt{3} rəqəminin kvadratı budur: 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-3x\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-3 almaq üçün -1 və 3 vurun.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\sqrt{3}x^{5}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}\sqrt{3}-3x ədədini x^{3} vurmaq üçün paylama qanunundan istifadə edin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
0 almaq üçün -\sqrt{3}x^{5} və \sqrt{3}x^{5} birləşdirin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-3x^{4}+2x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
2x^{2} ədədini x^{2}-\sqrt{3}x vurmaq üçün paylama qanunundan istifadə edin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-x^{4} almaq üçün -3x^{4} və 2x^{4} birləşdirin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-2\sqrt{3}x^{3}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
0 almaq üçün -x^{4} və x^{4} birləşdirin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-\sqrt{3}x^{3} almaq üçün -2\sqrt{3}x^{3} və \sqrt{3}x^{3} birləşdirin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}-\sqrt{3}x ədədini \sqrt{3} vurmaq üçün paylama qanunundan istifadə edin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\times 3\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
\sqrt{3} rəqəminin kvadratı budur: 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-3x\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-3 almaq üçün -1 və 3 vurun.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\sqrt{3}x^{3}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
x^{2}\sqrt{3}-3x ədədini x vurmaq üçün paylama qanunundan istifadə edin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+2x^{2}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
0 almaq üçün -\sqrt{3}x^{3} və \sqrt{3}x^{3} birləşdirin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
-x^{2} almaq üçün 2x^{2} və -3x^{2} birləşdirin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x+\sqrt{3}x+1)
0 almaq üçün -x^{2} və x^{2} birləşdirin.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+1)
0 almaq üçün -\sqrt{3}x və \sqrt{3}x birləşdirin.
6x^{6-1}
Polinomun törəməsi onun həddlərinin törəməsinin cəmidir. İstənilən konstant həddin törəməsi 0-dır. ax^{n} törəməsi nax^{n-1}-dir.
6x^{5}
6 ədədindən 1 ədədini çıxın.