Əsas məzmuna keç
x üçün həll et
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

x^{2}+10x+25=0
\left(x+5\right)^{2} genişləndirmək üçün \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ikitərkibli teoremindən istifadə edin.
a+b=10 ab=25
Tənliyi həll etmək üçün x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) düsturundan istifadə edərək x^{2}+10x+25 tənliyini əmsallarına ayırın. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
1,25 5,5
ab müsbət olduğu üçün a və b ədədinin eyni işarəsi var. a+b müsbət olduğu üçün a və b hər ikisi müsbətdir. 25 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
1+25=26 5+5=10
Hər cüt üçün cəmi hesablayın.
a=5 b=5
Həll 10 cəmini verən cütdür.
\left(x+5\right)\left(x+5\right)
Əldə olunan qiymətlərdən istifadə etməklə vuruqlara ayrılan \left(x+a\right)\left(x+b\right) ifadəsini yenidən yazın.
\left(x+5\right)^{2}
Binom kvadratı kimi yenidən yazın.
x=-5
Tənliyin həllini tapmaq üçün x+5=0 ifadəsini həll edin.
x^{2}+10x+25=0
\left(x+5\right)^{2} genişləndirmək üçün \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ikitərkibli teoremindən istifadə edin.
a+b=10 ab=1\times 25=25
Tənliyi həll etmək üçün qruplaşdırmaqla sol əl tərəfi əmsallarına ayırın. Əvvəlcə sol əl tərəf x^{2}+ax+bx+25 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
1,25 5,5
ab müsbət olduğu üçün a və b ədədinin eyni işarəsi var. a+b müsbət olduğu üçün a və b hər ikisi müsbətdir. 25 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
1+25=26 5+5=10
Hər cüt üçün cəmi hesablayın.
a=5 b=5
Həll 10 cəmini verən cütdür.
\left(x^{2}+5x\right)+\left(5x+25\right)
x^{2}+10x+25 \left(x^{2}+5x\right)+\left(5x+25\right) kimi yenidən yazılsın.
x\left(x+5\right)+5\left(x+5\right)
Birinci qrupda x ədədini və ikinci qrupda isə 5 ədədini vurub çıxarın.
\left(x+5\right)\left(x+5\right)
Paylayıcı xüsusiyyətini istifadə etməklə x+5 ümumi ifadəsi vurulanlara ayrılsın.
\left(x+5\right)^{2}
Binom kvadratı kimi yenidən yazın.
x=-5
Tənliyin həllini tapmaq üçün x+5=0 ifadəsini həll edin.
x^{2}+10x+25=0
\left(x+5\right)^{2} genişləndirmək üçün \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ikitərkibli teoremindən istifadə edin.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün 10 və c üçün 25 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
Kvadrat 10.
x=\frac{-10±\sqrt{100-100}}{2}
-4 ədədini 25 dəfə vurun.
x=\frac{-10±\sqrt{0}}{2}
100 -100 qrupuna əlavə edin.
x=-\frac{10}{2}
0 kvadrat kökünü alın.
x=-5
-10 ədədini 2 ədədinə bölün.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+5=0 x+5=0
Sadələşdirin.
x=-5 x=-5
Tənliyin hər iki tərəfindən 5 çıxın.
x=-5
Tənlik indi həll edilib. Həllər eynidir.