x üçün həll et
x=7
Qrafik
Paylaş
Panoya köçürüldü
\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Sıfıra bölmə müəyyən edilmədiyi üçün x dəyişəni -3,-1 ədədlərindən hər hansı birinə bərabər ola bilməz. 4\left(x+1\right)\left(x+3\right) ilə tənliyin hər iki tərəfini artırın, ən aşağı ümumi vuran x+3,4\left(x^{2}+4x+3\right) olmalıdır.
\left(x^{2}+4x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x+1 ədədini x+3 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x^{2}+4x+3 ədədini x-2 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x^{2}-x-2 faktorlara ayırın.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. 3 ədədini \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} dəfə vurun.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} və \frac{7x-5}{\left(x-2\right)\left(x+1\right)} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+3x-6x-6+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
3\left(x-2\right)\left(x+1\right)+7x-5 ifadəsində vurma əməliyyatları aparın.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+3x-6x-6+7x-5 ifadəsindəki həddlər kimi birləşdirin.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. \left(x-2\right)\left(x+1\right) və x+1 ədədinin ən az ortaq çoxluğu \left(x-2\right)\left(x+1\right) ədədidir. \frac{3x}{x+1} ədədini \frac{x-2}{x-2} dəfə vurun.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)} və \frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x^{2}+6x}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+4x-11-3x\left(x-2\right) ifadəsində vurma əməliyyatları aparın.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+4x-11-3x^{2}+6x ifadəsindəki həddlər kimi birləşdirin.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)} vahid kəsr kimi ifadə edin.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+20x+20=9x^{2}+43x+8
4x+4 ədədini 5 vurmaq üçün paylama qanunundan istifadə edin.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. 20x+20 ədədini \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} dəfə vurun.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)} və \frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right) ifadəsində vurma əməliyyatları aparın.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40 ifadəsindəki həddlər kimi birləşdirin.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}=9x^{2}+43x+8
x-2 ədədini x+1 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}-9x^{2}=43x+8
Hər iki tərəfdən 9x^{2} çıxın.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-9x^{2}=43x+8
x^{2}-x-2 faktorlara ayırın.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. -9x^{2} ədədini \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} dəfə vurun.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} və \frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}}{\left(x-2\right)\left(x+1\right)}=43x+8
10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right) ifadəsində vurma əməliyyatları aparın.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=43x+8
10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2} ifadəsindəki həddlər kimi birləşdirin.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
Hər iki tərəfdən 43x çıxın.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{x^{2}-x-2}-43x=8
x-2 ədədini x+1 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
x^{2}-x-2 faktorlara ayırın.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. -43x ədədini \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} dəfə vurun.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} və \frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} eyni göstəriciyə malikdir, onların surətlərini əlavə etməklə onları əlavə edin.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x}{\left(x-2\right)\left(x+1\right)}=8
x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right) ifadəsində vurma əməliyyatları aparın.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}=8
x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x ifadəsindəki həddlər kimi birləşdirin.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
Hər iki tərəfdən 8 çıxın.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{x^{2}-x-2}-8=0
x-2 ədədini x+1 vurmaq üçün paylama xüsusiyyətindən istifadə edin və oxşar terminləri birləşdirin.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
x^{2}-x-2 faktorlara ayırın.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-\frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
İfadələr əlavə etmək və ya çıxmaq məqsədilə məxrəclərini eyniləşdirmək üçün onları genişləndirin. 8 ədədini \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} dəfə vurun.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)} və \frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16}{\left(x-2\right)\left(x+1\right)}=0
x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right) ifadəsində vurma əməliyyatları aparın.
\frac{x^{4}-5x^{3}-19x^{2}+29x+42}{\left(x-2\right)\left(x+1\right)}=0
x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16 ifadəsindəki həddlər kimi birləşdirin.
x^{4}-5x^{3}-19x^{2}+29x+42=0
Sıfıra bölmə müəyyən edilmədiyi üçün x dəyişəni -1,2 ədədlərindən hər hansı birinə bərabər ola bilməz. Tənliyin hər iki tərəfini \left(x-2\right)\left(x+1\right) rəqəminə vurun.
±42,±21,±14,±7,±6,±3,±2,±1
Rasional Kök Teoremi ilə bütün polinomların rasional kökləri \frac{p}{q} formasındadır, burada p 42 bircins polinomu bölür, q isə 1 əsas əmsalını bölür. Bütün \frac{p}{q} üzvlərini sadala.
x=-1
Mütləq qiymət ilə ən kiçikdən başlayaraq bütün tam ədədli qiymətləri sınaqdan keçirərək belə bir kökü tapın. Əgər heç bir tam ədədli köklər tapılmayıbsa, kəsrləri sınaqdan keçirin.
x^{3}-6x^{2}-13x+42=0
Vuruq teoremi ilə, x-k hər bir k kökü üçün polinomun vuruğudur. x^{3}-6x^{2}-13x+42 almaq üçün x^{4}-5x^{3}-19x^{2}+29x+42 x+1 bölün. Nəticənin 0-a bərabər olduğu tənliyi həll edin.
±42,±21,±14,±7,±6,±3,±2,±1
Rasional Kök Teoremi ilə bütün polinomların rasional kökləri \frac{p}{q} formasındadır, burada p 42 bircins polinomu bölür, q isə 1 əsas əmsalını bölür. Bütün \frac{p}{q} üzvlərini sadala.
x=2
Mütləq qiymət ilə ən kiçikdən başlayaraq bütün tam ədədli qiymətləri sınaqdan keçirərək belə bir kökü tapın. Əgər heç bir tam ədədli köklər tapılmayıbsa, kəsrləri sınaqdan keçirin.
x^{2}-4x-21=0
Vuruq teoremi ilə, x-k hər bir k kökü üçün polinomun vuruğudur. x^{2}-4x-21 almaq üçün x^{3}-6x^{2}-13x+42 x-2 bölün. Nəticənin 0-a bərabər olduğu tənliyi həll edin.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
ax^{2}+bx+c=0 formasının bütün tənliklərini kvadrat düsturdan istifadə etməklə həll etmək olar: kvadrat düsturda \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a üçün 1, b üçün -4, və c üçün -21 əvəzlənsin.
x=\frac{4±10}{2}
Hesablamalar edin.
x=-3 x=7
± müsbət və ± mənfi olduqda x^{2}-4x-21=0 tənliyini həll edin.
x=7
Dəyişənin bərabər ola bilmədiyi qiymətləri silin.
x=-1 x=2 x=-3 x=7
Bütün tapılan həlləri qeyd edin.
x=7
x dəyişəni -1,2,-3 ədədlərindən hər hansı birinə bərabər ola bilməz.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}