x üçün həll et
x=-\frac{1}{3}\approx -0,333333333
x=-1
Qrafik
Paylaş
Panoya köçürüldü
4x^{2}+4x+1=1+\left(x-1\right)\left(x+1\right)
\left(2x+1\right)^{2} genişləndirmək üçün \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ikitərkibli teoremindən istifadə edin.
4x^{2}+4x+1=1+x^{2}-1
\left(x-1\right)\left(x+1\right) seçimini qiymətləndirin. Vurma aşağıdakı qaydadan istifadə edərək kvadratlar fərqinə çevrilə bilər: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat 1.
4x^{2}+4x+1=x^{2}
0 almaq üçün 1 1 çıxın.
4x^{2}+4x+1-x^{2}=0
Hər iki tərəfdən x^{2} çıxın.
3x^{2}+4x+1=0
3x^{2} almaq üçün 4x^{2} və -x^{2} birləşdirin.
a+b=4 ab=3\times 1=3
Tənliyi həll etmək üçün qruplaşdırmaqla sol əl tərəfi əmsallarına ayırın. Əvvəlcə sol əl tərəf 3x^{2}+ax+bx+1 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
a=1 b=3
ab müsbət olduğu üçün a və b ədədinin eyni işarəsi var. a+b müsbət olduğu üçün a və b hər ikisi müsbətdir. Yalnız belə cüt sistem həllidir.
\left(3x^{2}+x\right)+\left(3x+1\right)
3x^{2}+4x+1 \left(3x^{2}+x\right)+\left(3x+1\right) kimi yenidən yazılsın.
x\left(3x+1\right)+3x+1
3x^{2}+x-də x vurulanlara ayrılsın.
\left(3x+1\right)\left(x+1\right)
Paylayıcı xüsusiyyətini istifadə etməklə 3x+1 ümumi ifadəsi vurulanlara ayrılsın.
x=-\frac{1}{3} x=-1
Tənliyin həllərini tapmaq üçün 3x+1=0 və x+1=0 ifadələrini həll edin.
4x^{2}+4x+1=1+\left(x-1\right)\left(x+1\right)
\left(2x+1\right)^{2} genişləndirmək üçün \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ikitərkibli teoremindən istifadə edin.
4x^{2}+4x+1=1+x^{2}-1
\left(x-1\right)\left(x+1\right) seçimini qiymətləndirin. Vurma aşağıdakı qaydadan istifadə edərək kvadratlar fərqinə çevrilə bilər: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat 1.
4x^{2}+4x+1=x^{2}
0 almaq üçün 1 1 çıxın.
4x^{2}+4x+1-x^{2}=0
Hər iki tərəfdən x^{2} çıxın.
3x^{2}+4x+1=0
3x^{2} almaq üçün 4x^{2} və -x^{2} birləşdirin.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2\times 3}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 3, b üçün 4 və c üçün 1 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-4±\sqrt{16-4\times 3}}{2\times 3}
Kvadrat 4.
x=\frac{-4±\sqrt{16-12}}{2\times 3}
-4 ədədini 3 dəfə vurun.
x=\frac{-4±\sqrt{4}}{2\times 3}
16 -12 qrupuna əlavə edin.
x=\frac{-4±2}{2\times 3}
4 kvadrat kökünü alın.
x=\frac{-4±2}{6}
2 ədədini 3 dəfə vurun.
x=-\frac{2}{6}
İndi ± plyus olsa x=\frac{-4±2}{6} tənliyini həll edin. -4 2 qrupuna əlavə edin.
x=-\frac{1}{3}
2 çıxarmaqla və ləğv etməklə ən aşağı həddlərə gətirərək \frac{-2}{6} kəsrini azaldın.
x=-\frac{6}{6}
İndi ± minus olsa x=\frac{-4±2}{6} tənliyini həll edin. -4 ədədindən 2 ədədini çıxın.
x=-1
-6 ədədini 6 ədədinə bölün.
x=-\frac{1}{3} x=-1
Tənlik indi həll edilib.
4x^{2}+4x+1=1+\left(x-1\right)\left(x+1\right)
\left(2x+1\right)^{2} genişləndirmək üçün \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ikitərkibli teoremindən istifadə edin.
4x^{2}+4x+1=1+x^{2}-1
\left(x-1\right)\left(x+1\right) seçimini qiymətləndirin. Vurma aşağıdakı qaydadan istifadə edərək kvadratlar fərqinə çevrilə bilər: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrat 1.
4x^{2}+4x+1=x^{2}
0 almaq üçün 1 1 çıxın.
4x^{2}+4x+1-x^{2}=0
Hər iki tərəfdən x^{2} çıxın.
3x^{2}+4x+1=0
3x^{2} almaq üçün 4x^{2} və -x^{2} birləşdirin.
3x^{2}+4x=-1
Hər iki tərəfdən 1 çıxın. Sıfırdan istənilən şeyi çıxdıqda mənfisi alınır.
\frac{3x^{2}+4x}{3}=-\frac{1}{3}
Hər iki tərəfi 3 rəqəminə bölün.
x^{2}+\frac{4}{3}x=-\frac{1}{3}
3 ədədinə bölmək 3 ədədinə vurmanı qaytarır.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(\frac{2}{3}\right)^{2}
x həddinin əmsalı olan \frac{4}{3} ədədini \frac{2}{3} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə \frac{2}{3} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla \frac{2}{3} kvadratlaşdırın.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
Ortaq məxrəci tapmaqla və surətləri əlavə etməklə -\frac{1}{3} kəsrini \frac{4}{9} kəsrinə əlavə edin. Daha sonra mümkündürsə, kəsri ən aşağı həddə qədər azaldın.
\left(x+\frac{2}{3}\right)^{2}=\frac{1}{9}
Faktor x^{2}+\frac{4}{3}x+\frac{4}{9}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+\frac{2}{3}=\frac{1}{3} x+\frac{2}{3}=-\frac{1}{3}
Sadələşdirin.
x=-\frac{1}{3} x=-1
Tənliyin hər iki tərəfindən \frac{2}{3} çıxın.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}