Qiymətləndir
8a
Genişləndir
8a
Paylaş
Panoya köçürüldü
4a^{2}+4a+1-\left(2a-1\right)^{2}
\left(2a+1\right)^{2} genişləndirmək üçün \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ikitərkibli teoremindən istifadə edin.
4a^{2}+4a+1-\left(4a^{2}-4a+1\right)
\left(2a-1\right)^{2} genişləndirmək üçün \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ikitərkibli teoremindən istifadə edin.
4a^{2}+4a+1-4a^{2}+4a-1
4a^{2}-4a+1 əksini tapmaq üçün hər bir həddin əksini tapın.
4a+1+4a-1
0 almaq üçün 4a^{2} və -4a^{2} birləşdirin.
8a+1-1
8a almaq üçün 4a və 4a birləşdirin.
8a
0 almaq üçün 1 1 çıxın.
4a^{2}+4a+1-\left(2a-1\right)^{2}
\left(2a+1\right)^{2} genişləndirmək üçün \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ikitərkibli teoremindən istifadə edin.
4a^{2}+4a+1-\left(4a^{2}-4a+1\right)
\left(2a-1\right)^{2} genişləndirmək üçün \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ikitərkibli teoremindən istifadə edin.
4a^{2}+4a+1-4a^{2}+4a-1
4a^{2}-4a+1 əksini tapmaq üçün hər bir həddin əksini tapın.
4a+1+4a-1
0 almaq üçün 4a^{2} və -4a^{2} birləşdirin.
8a+1-1
8a almaq üçün 4a və 4a birləşdirin.
8a
0 almaq üçün 1 1 çıxın.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}