x üçün həll et
x=-6
x=1
Qrafik
Paylaş
Panoya köçürüldü
-6-x^{2}=-5x-2x^{2}
2x ədədini -\frac{5}{2}-x vurmaq üçün paylama qanunundan istifadə edin.
-6-x^{2}+5x=-2x^{2}
5x hər iki tərəfə əlavə edin.
-6-x^{2}+5x+2x^{2}=0
2x^{2} hər iki tərəfə əlavə edin.
-6+x^{2}+5x=0
x^{2} almaq üçün -x^{2} və 2x^{2} birləşdirin.
x^{2}+5x-6=0
Standart formaya salmaq üçün çoxhədlini yenidən qurun. Həddləri ən yüksəkdən ən aşağı qüvvətə doğru yerləşdirin.
a+b=5 ab=-6
Tənliyi həll etmək üçün x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) düsturundan istifadə edərək x^{2}+5x-6 tənliyini əmsallarına ayırın. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,6 -2,3
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b müsbət olduğu üçün müsbət rəqəmin mənfidən daha böyük mütləq qiyməti var. -6 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1+6=5 -2+3=1
Hər cüt üçün cəmi hesablayın.
a=-1 b=6
Həll 5 cəmini verən cütdür.
\left(x-1\right)\left(x+6\right)
Əldə olunan qiymətlərdən istifadə etməklə vuruqlara ayrılan \left(x+a\right)\left(x+b\right) ifadəsini yenidən yazın.
x=1 x=-6
Tənliyin həllərini tapmaq üçün x-1=0 və x+6=0 ifadələrini həll edin.
-6-x^{2}=-5x-2x^{2}
2x ədədini -\frac{5}{2}-x vurmaq üçün paylama qanunundan istifadə edin.
-6-x^{2}+5x=-2x^{2}
5x hər iki tərəfə əlavə edin.
-6-x^{2}+5x+2x^{2}=0
2x^{2} hər iki tərəfə əlavə edin.
-6+x^{2}+5x=0
x^{2} almaq üçün -x^{2} və 2x^{2} birləşdirin.
x^{2}+5x-6=0
Standart formaya salmaq üçün çoxhədlini yenidən qurun. Həddləri ən yüksəkdən ən aşağı qüvvətə doğru yerləşdirin.
a+b=5 ab=1\left(-6\right)=-6
Tənliyi həll etmək üçün qruplaşdırmaqla sol əl tərəfi əmsallarına ayırın. Əvvəlcə sol əl tərəf x^{2}+ax+bx-6 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,6 -2,3
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b müsbət olduğu üçün müsbət rəqəmin mənfidən daha böyük mütləq qiyməti var. -6 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1+6=5 -2+3=1
Hər cüt üçün cəmi hesablayın.
a=-1 b=6
Həll 5 cəmini verən cütdür.
\left(x^{2}-x\right)+\left(6x-6\right)
x^{2}+5x-6 \left(x^{2}-x\right)+\left(6x-6\right) kimi yenidən yazılsın.
x\left(x-1\right)+6\left(x-1\right)
Birinci qrupda x ədədini və ikinci qrupda isə 6 ədədini vurub çıxarın.
\left(x-1\right)\left(x+6\right)
Paylayıcı xüsusiyyətini istifadə etməklə x-1 ümumi ifadəsi vurulanlara ayrılsın.
x=1 x=-6
Tənliyin həllərini tapmaq üçün x-1=0 və x+6=0 ifadələrini həll edin.
-6-x^{2}=-5x-2x^{2}
2x ədədini -\frac{5}{2}-x vurmaq üçün paylama qanunundan istifadə edin.
-6-x^{2}+5x=-2x^{2}
5x hər iki tərəfə əlavə edin.
-6-x^{2}+5x+2x^{2}=0
2x^{2} hər iki tərəfə əlavə edin.
-6+x^{2}+5x=0
x^{2} almaq üçün -x^{2} və 2x^{2} birləşdirin.
x^{2}+5x-6=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-5±\sqrt{5^{2}-4\left(-6\right)}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün 5 və c üçün -6 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-5±\sqrt{25-4\left(-6\right)}}{2}
Kvadrat 5.
x=\frac{-5±\sqrt{25+24}}{2}
-4 ədədini -6 dəfə vurun.
x=\frac{-5±\sqrt{49}}{2}
25 24 qrupuna əlavə edin.
x=\frac{-5±7}{2}
49 kvadrat kökünü alın.
x=\frac{2}{2}
İndi ± plyus olsa x=\frac{-5±7}{2} tənliyini həll edin. -5 7 qrupuna əlavə edin.
x=1
2 ədədini 2 ədədinə bölün.
x=-\frac{12}{2}
İndi ± minus olsa x=\frac{-5±7}{2} tənliyini həll edin. -5 ədədindən 7 ədədini çıxın.
x=-6
-12 ədədini 2 ədədinə bölün.
x=1 x=-6
Tənlik indi həll edilib.
-6-x^{2}=-5x-2x^{2}
2x ədədini -\frac{5}{2}-x vurmaq üçün paylama qanunundan istifadə edin.
-6-x^{2}+5x=-2x^{2}
5x hər iki tərəfə əlavə edin.
-6-x^{2}+5x+2x^{2}=0
2x^{2} hər iki tərəfə əlavə edin.
-6+x^{2}+5x=0
x^{2} almaq üçün -x^{2} və 2x^{2} birləşdirin.
x^{2}+5x=6
6 hər iki tərəfə əlavə edin. Sıfırın üzərinə istənilən şeyi gəldikdə özü alınır.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=6+\left(\frac{5}{2}\right)^{2}
x həddinin əmsalı olan 5 ədədini \frac{5}{2} almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə \frac{5}{2} kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}+5x+\frac{25}{4}=6+\frac{25}{4}
Kəsrin həm surəti, həm də məxrəcini kvadratlaşdırmaqla \frac{5}{2} kvadratlaşdırın.
x^{2}+5x+\frac{25}{4}=\frac{49}{4}
6 \frac{25}{4} qrupuna əlavə edin.
\left(x+\frac{5}{2}\right)^{2}=\frac{49}{4}
Faktor x^{2}+5x+\frac{25}{4}. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x+\frac{5}{2}=\frac{7}{2} x+\frac{5}{2}=-\frac{7}{2}
Sadələşdirin.
x=1 x=-6
Tənliyin hər iki tərəfindən \frac{5}{2} çıxın.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}