Qiymətləndir
\frac{t^{2}}{4}
t ilə əlaqədar diferensiallaşdırın
\frac{t}{2}
Paylaş
Panoya köçürüldü
\frac{tt}{4}
\frac{t}{4}t vahid kəsr kimi ifadə edin.
\frac{t^{2}}{4}
t^{2} almaq üçün t və t vurun.
\frac{1}{4}t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{1})+t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{4}t^{1})
İstənilən diferensial funksiyalar üçün iki funksiyanın hasilinin törəməsi funksiyanı birinci funksiyanı ikinci funksiyanın törəməsinə vurub, ikinci ilə birincinin törəməsinin hasilinə əlavə edin.
\frac{1}{4}t^{1}t^{1-1}+t^{1}\times \frac{1}{4}t^{1-1}
Polinomun törəməsi onun həddlərinin törəməsinin cəmidir. İstənilən konstant həddin törəməsi 0-dır. ax^{n} törəməsi nax^{n-1}-dir.
\frac{1}{4}t^{1}t^{0}+t^{1}\times \frac{1}{4}t^{0}
Sadələşdirin.
\frac{1}{4}t^{1}+\frac{1}{4}t^{1}
Eyni əsasın qüvvətlərini vurmaq üçün onların eksponentlərini toplayın.
\frac{1+1}{4}t^{1}
Həddlər kimi birləşdirin.
\frac{1}{2}t^{1}
Ortaq məxrəci tapmaqla və surətləri əlavə etməklə \frac{1}{4} kəsrini \frac{1}{4} kəsrinə əlavə edin. Daha sonra mümkündürsə, kəsri ən aşağı həddə qədər azaldın.
\frac{1}{2}t
İstənilən şərt üçün t, t^{1}=t.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}