y üçün həll et
y=4
Qrafik
Paylaş
Panoya köçürüldü
a+b=-8 ab=16
Tənliyi həll etmək üçün y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right) düsturundan istifadə edərək y^{2}-8y+16 tənliyini əmsallarına ayırın. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,-16 -2,-8 -4,-4
ab müsbət olduğu üçün a və b ədədinin eyni işarəsi var. a+b mənfi olduğu üçün a və b hər ikisi mənfidir. 16 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1-16=-17 -2-8=-10 -4-4=-8
Hər cüt üçün cəmi hesablayın.
a=-4 b=-4
Həll -8 cəmini verən cütdür.
\left(y-4\right)\left(y-4\right)
Əldə olunan qiymətlərdən istifadə etməklə vuruqlara ayrılan \left(y+a\right)\left(y+b\right) ifadəsini yenidən yazın.
\left(y-4\right)^{2}
Binom kvadratı kimi yenidən yazın.
y=4
Tənliyin həllini tapmaq üçün y-4=0 ifadəsini həll edin.
a+b=-8 ab=1\times 16=16
Tənliyi həll etmək üçün qruplaşdırmaqla sol əl tərəfi əmsallarına ayırın. Əvvəlcə sol əl tərəf y^{2}+ay+by+16 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
-1,-16 -2,-8 -4,-4
ab müsbət olduğu üçün a və b ədədinin eyni işarəsi var. a+b mənfi olduğu üçün a və b hər ikisi mənfidir. 16 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
-1-16=-17 -2-8=-10 -4-4=-8
Hər cüt üçün cəmi hesablayın.
a=-4 b=-4
Həll -8 cəmini verən cütdür.
\left(y^{2}-4y\right)+\left(-4y+16\right)
y^{2}-8y+16 \left(y^{2}-4y\right)+\left(-4y+16\right) kimi yenidən yazılsın.
y\left(y-4\right)-4\left(y-4\right)
Birinci qrupda y ədədini və ikinci qrupda isə -4 ədədini vurub çıxarın.
\left(y-4\right)\left(y-4\right)
Paylayıcı xüsusiyyətini istifadə etməklə y-4 ümumi ifadəsi vurulanlara ayrılsın.
\left(y-4\right)^{2}
Binom kvadratı kimi yenidən yazın.
y=4
Tənliyin həllini tapmaq üçün y-4=0 ifadəsini həll edin.
y^{2}-8y+16=0
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün -8 və c üçün 16 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Kvadrat -8.
y=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
-4 ədədini 16 dəfə vurun.
y=\frac{-\left(-8\right)±\sqrt{0}}{2}
64 -64 qrupuna əlavə edin.
y=-\frac{-8}{2}
0 kvadrat kökünü alın.
y=\frac{8}{2}
-8 rəqəminin əksi budur: 8.
y=4
8 ədədini 2 ədədinə bölün.
y^{2}-8y+16=0
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
\left(y-4\right)^{2}=0
Faktor y^{2}-8y+16. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(y-4\right)^{2}}=\sqrt{0}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
y-4=0 y-4=0
Sadələşdirin.
y=4 y=4
Tənliyin hər iki tərəfinə 4 əlavə edin.
y=4
Tənlik indi həll edilib. Həllər eynidir.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}