x üçün həll et (complex solution)
x\in \frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}e^{\frac{2\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}e^{\frac{4\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}e^{\frac{4\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}e^{\frac{2\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}}{2}
x üçün həll et
x=\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}}{2}\approx 0,72556263
x = \frac{2 ^ {\frac{2}{3}} \sqrt[3]{\sqrt{5} + 3}}{2} \approx 1,378240772
Qrafik
Paylaş
Panoya köçürüldü
x^{3}x^{3}+1=3x^{3}
Sıfıra bölmə müəyyən edilmədiyi üçün x dəyişəni 0 ədədinə bərabər ola bilməz. Tənliyin hər iki tərəfini x^{3} rəqəminə vurun.
x^{6}+1=3x^{3}
Eyni əsasdan qüvvətləri vurmaq üçün onun göstəricilərini əlavə edin. 6 almaq üçün 3 və 3 əlavə edin.
x^{6}+1-3x^{3}=0
Hər iki tərəfdən 3x^{3} çıxın.
t^{2}-3t+1=0
x^{3} üçün t seçimini əvəz edin.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 formasının bütün tənliklərini kvadrat düsturdan istifadə etməklə həll etmək olar: kvadrat düsturda \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a üçün 1, b üçün -3, və c üçün 1 əvəzlənsin.
t=\frac{3±\sqrt{5}}{2}
Hesablamalar edin.
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
± müsbət və ± mənfi olduqda t=\frac{3±\sqrt{5}}{2} tənliyini həll edin.
x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
x=t^{3} olduğu üçün həll üsulları hər t üçün tənliyi həll etməklə əldə edilir.
x=\sqrt[3]{\frac{3-\sqrt{5}}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0 x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0
x dəyişəni 0 ədədinə bərabər ola bilməz.
x^{3}x^{3}+1=3x^{3}
Sıfıra bölmə müəyyən edilmədiyi üçün x dəyişəni 0 ədədinə bərabər ola bilməz. Tənliyin hər iki tərəfini x^{3} rəqəminə vurun.
x^{6}+1=3x^{3}
Eyni əsasdan qüvvətləri vurmaq üçün onun göstəricilərini əlavə edin. 6 almaq üçün 3 və 3 əlavə edin.
x^{6}+1-3x^{3}=0
Hər iki tərəfdən 3x^{3} çıxın.
t^{2}-3t+1=0
x^{3} üçün t seçimini əvəz edin.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 formasının bütün tənliklərini kvadrat düsturdan istifadə etməklə həll etmək olar: kvadrat düsturda \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a üçün 1, b üçün -3, və c üçün 1 əvəzlənsin.
t=\frac{3±\sqrt{5}}{2}
Hesablamalar edin.
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
± müsbət və ± mənfi olduqda t=\frac{3±\sqrt{5}}{2} tənliyini həll edin.
x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
x=t^{3} seçiminə kimi həllər hər t üçün x=\sqrt[3]{t} seçimini qiymətləndirməklə əldə olunur.
Nümunələr
Quadratik tənlik
{ x } ^ { 2 } - 4 x - 5 = 0
Triqonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Xətti tənlik
y = 3x + 4
Arifmetika
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Eyni vaxtda tənlik
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensiallaşdırma
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
İnteqrasiya
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitlər
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}