Əsas məzmuna keç
Amil
Tick mark Image
Qiymətləndir
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

a+b=-2 ab=1\left(-3\right)=-3
Qruplaşdırmaqla ifadəni əmsallarına ayırın. Əvvəlcə ifadə x^{2}+ax+bx-3 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
a=-3 b=1
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b mənfi olduğu üçün mənfi rəqəmin müsbətdən daha böyük mütləq qiyməti var. Yalnız belə cüt sistem həllidir.
\left(x^{2}-3x\right)+\left(x-3\right)
x^{2}-2x-3 \left(x^{2}-3x\right)+\left(x-3\right) kimi yenidən yazılsın.
x\left(x-3\right)+x-3
x^{2}-3x-də x vurulanlara ayrılsın.
\left(x-3\right)\left(x+1\right)
Paylayıcı xüsusiyyətini istifadə etməklə x-3 ümumi ifadəsi vurulanlara ayrılsın.
x^{2}-2x-3=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Kvadrat -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
-4 ədədini -3 dəfə vurun.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
4 12 qrupuna əlavə edin.
x=\frac{-\left(-2\right)±4}{2}
16 kvadrat kökünü alın.
x=\frac{2±4}{2}
-2 rəqəminin əksi budur: 2.
x=\frac{6}{2}
İndi ± plyus olsa x=\frac{2±4}{2} tənliyini həll edin. 2 4 qrupuna əlavə edin.
x=3
6 ədədini 2 ədədinə bölün.
x=-\frac{2}{2}
İndi ± minus olsa x=\frac{2±4}{2} tənliyini həll edin. 2 ədədindən 4 ədədini çıxın.
x=-1
-2 ədədini 2 ədədinə bölün.
x^{2}-2x-3=\left(x-3\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün 3 və x_{2} üçün -1 əvəzləyici.
x^{2}-2x-3=\left(x-3\right)\left(x+1\right)
p-\left(-q\right) formasının bütün ifadələrini p+q ifadəsinə sadələşdirin.