Əsas məzmuna keç
x üçün həll et
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

x^{2}-2x-3=0
Hər iki tərəfdən 3 çıxın.
a+b=-2 ab=-3
Tənliyi həll etmək üçün x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) düsturundan istifadə edərək x^{2}-2x-3 tənliyini əmsallarına ayırın. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
a=-3 b=1
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b mənfi olduğu üçün mənfi rəqəmin müsbətdən daha böyük mütləq qiyməti var. Yalnız belə cüt sistem həllidir.
\left(x-3\right)\left(x+1\right)
Əldə olunan qiymətlərdən istifadə etməklə vuruqlara ayrılan \left(x+a\right)\left(x+b\right) ifadəsini yenidən yazın.
x=3 x=-1
Tənliyin həllərini tapmaq üçün x-3=0 və x+1=0 ifadələrini həll edin.
x^{2}-2x-3=0
Hər iki tərəfdən 3 çıxın.
a+b=-2 ab=1\left(-3\right)=-3
Tənliyi həll etmək üçün qruplaşdırmaqla sol əl tərəfi əmsallarına ayırın. Əvvəlcə sol əl tərəf x^{2}+ax+bx-3 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
a=-3 b=1
ab mənfi olduğu üçün a və b ədədlərinin əks işarələri var. a+b mənfi olduğu üçün mənfi rəqəmin müsbətdən daha böyük mütləq qiyməti var. Yalnız belə cüt sistem həllidir.
\left(x^{2}-3x\right)+\left(x-3\right)
x^{2}-2x-3 \left(x^{2}-3x\right)+\left(x-3\right) kimi yenidən yazılsın.
x\left(x-3\right)+x-3
x^{2}-3x-də x vurulanlara ayrılsın.
\left(x-3\right)\left(x+1\right)
Paylayıcı xüsusiyyətini istifadə etməklə x-3 ümumi ifadəsi vurulanlara ayrılsın.
x=3 x=-1
Tənliyin həllərini tapmaq üçün x-3=0 və x+1=0 ifadələrini həll edin.
x^{2}-2x=3
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x^{2}-2x-3=3-3
Tənliyin hər iki tərəfindən 3 çıxın.
x^{2}-2x-3=0
3 ədədindən özünün çıxılması 0-a bərabərdir.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Bu tənlik standart formadadır: ax^{2}+bx+c=0. Kvadrat tənliyin kökləri düsturundakı a üçün 1, b üçün -2 və c üçün -3 ilə \frac{-b±\sqrt{b^{2}-4ac}}{2a} əvəz edin.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Kvadrat -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
-4 ədədini -3 dəfə vurun.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
4 12 qrupuna əlavə edin.
x=\frac{-\left(-2\right)±4}{2}
16 kvadrat kökünü alın.
x=\frac{2±4}{2}
-2 rəqəminin əksi budur: 2.
x=\frac{6}{2}
İndi ± plyus olsa x=\frac{2±4}{2} tənliyini həll edin. 2 4 qrupuna əlavə edin.
x=3
6 ədədini 2 ədədinə bölün.
x=-\frac{2}{2}
İndi ± minus olsa x=\frac{2±4}{2} tənliyini həll edin. 2 ədədindən 4 ədədini çıxın.
x=-1
-2 ədədini 2 ədədinə bölün.
x=3 x=-1
Tənlik indi həll edilib.
x^{2}-2x=3
Bunun kimi kvadratik tənliklər kvadratı tamamlamaqla həll edilə bilər. Kvadratı tamamlamaqla, tənlik əvvəlcə x^{2}+bx=c formasında olmalıdır.
x^{2}-2x+1=3+1
x həddinin əmsalı olan -2 ədədini -1 almaq üçün 2-yə bölün. Daha sonra tənliyin hər iki tərəfinə -1 kvadratını əlavə edin. Bu mərhələ tənliyin sol tərəfini tam kvadrat edir.
x^{2}-2x+1=4
3 1 qrupuna əlavə edin.
\left(x-1\right)^{2}=4
Faktor x^{2}-2x+1. Ümumiyyətlə, x^{2}+bx+c tam kvadrat olduqda həmişə \left(x+\frac{b}{2}\right)^{2} kimi vuruqlara ayrıla bilər.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tənliyin hər iki tərəfinin kvadrat kökünü aparın.
x-1=2 x-1=-2
Sadələşdirin.
x=3 x=-1
Tənliyin hər iki tərəfinə 1 əlavə edin.