Əsas məzmuna keç
Amil
Tick mark Image
Qiymətləndir
Tick mark Image
Qrafik

Veb Axtarışdan Oxşar Problemlər

Paylaş

x^{2}+2x-4=0
Kvadrat polinomu ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) çevirməsindən istifadə etməklə vuranlara ayırmaq mümkün olur, burada x_{1} və x_{2} kvadrat ax^{2}+bx+c=0 tənliyinin həlləridir.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
ax^{2}+bx+c=0 formasının bütün tənlikləri kvadratlar düsturundan istifadə edərək həll edilə bilər: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratlar düsturu biri ± toplama olduqda və digəri çıxma olduqda iki həll verir.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Kvadrat 2.
x=\frac{-2±\sqrt{4+16}}{2}
-4 ədədini -4 dəfə vurun.
x=\frac{-2±\sqrt{20}}{2}
4 16 qrupuna əlavə edin.
x=\frac{-2±2\sqrt{5}}{2}
20 kvadrat kökünü alın.
x=\frac{2\sqrt{5}-2}{2}
İndi ± plyus olsa x=\frac{-2±2\sqrt{5}}{2} tənliyini həll edin. -2 2\sqrt{5} qrupuna əlavə edin.
x=\sqrt{5}-1
-2+2\sqrt{5} ədədini 2 ədədinə bölün.
x=\frac{-2\sqrt{5}-2}{2}
İndi ± minus olsa x=\frac{-2±2\sqrt{5}}{2} tənliyini həll edin. -2 ədədindən 2\sqrt{5} ədədini çıxın.
x=-\sqrt{5}-1
-2-2\sqrt{5} ədədini 2 ədədinə bölün.
x^{2}+2x-4=\left(x-\left(\sqrt{5}-1\right)\right)\left(x-\left(-\sqrt{5}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) istifadə etməklə ilkin ifadəni vuruqlara ayırın. x_{1} üçün -1+\sqrt{5} və x_{2} üçün -1-\sqrt{5} əvəzləyici.