Əsas məzmuna keç
Qiymətləndir
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\sqrt{\frac{51}{20}-\frac{4}{20}}
20 və 5 ədədinin ən az ortaq çoxluğu 20 ədədidir. 20 məxrəci ilə \frac{51}{20} və \frac{1}{5} ədədlərini kəsrə çevirin.
\sqrt{\frac{51-4}{20}}
\frac{51}{20} və \frac{4}{20} eyni göstəriciyə malikdir, onların surətlərini çıxarmaqla onları çıxarın.
\sqrt{\frac{47}{20}}
47 almaq üçün 51 4 çıxın.
\frac{\sqrt{47}}{\sqrt{20}}
\sqrt{\frac{47}{20}} bölməsinin kvadrat kökünü \frac{\sqrt{47}}{\sqrt{20}} kravdrat köklərinin bölməsi kimi yenidən yazın.
\frac{\sqrt{47}}{2\sqrt{5}}
20=2^{2}\times 5 faktorlara ayırın. \sqrt{2^{2}\times 5} hasilinin kvadrat kökünü \sqrt{2^{2}}\sqrt{5} kravdrat köklərinin hasili kimi yenidən yazın. 2^{2} kvadrat kökünü alın.
\frac{\sqrt{47}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}
Surət və məxrəci \sqrt{5} vurmaqla \frac{\sqrt{47}}{2\sqrt{5}} məxrəcini rasionallaşdırın.
\frac{\sqrt{47}\sqrt{5}}{2\times 5}
\sqrt{5} rəqəminin kvadratı budur: 5.
\frac{\sqrt{235}}{2\times 5}
\sqrt{47} və \sqrt{5} ədədlərini vurmaq üçün rəqəmləri kvadrat kökün altında vurun.
\frac{\sqrt{235}}{10}
10 almaq üçün 2 və 5 vurun.