Əsas məzmuna keç
a üçün həll et
Tick mark Image

Veb Axtarışdan Oxşar Problemlər

Paylaş

\sqrt{2a-3}=a-3
Tənliyin hər iki tərəfindən 3 çıxın.
\left(\sqrt{2a-3}\right)^{2}=\left(a-3\right)^{2}
Tənliyin hər iki tərəfini kvadratlaşdırın.
2a-3=\left(a-3\right)^{2}
2a-3 almaq üçün 2 \sqrt{2a-3} qüvvətini hesablayın.
2a-3=a^{2}-6a+9
\left(a-3\right)^{2} genişləndirmək üçün \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ikitərkibli teoremindən istifadə edin.
2a-3-a^{2}=-6a+9
Hər iki tərəfdən a^{2} çıxın.
2a-3-a^{2}+6a=9
6a hər iki tərəfə əlavə edin.
8a-3-a^{2}=9
8a almaq üçün 2a və 6a birləşdirin.
8a-3-a^{2}-9=0
Hər iki tərəfdən 9 çıxın.
8a-12-a^{2}=0
-12 almaq üçün -3 9 çıxın.
-a^{2}+8a-12=0
Standart formaya salmaq üçün çoxhədlini yenidən qurun. Həddləri ən yüksəkdən ən aşağı qüvvətə doğru yerləşdirin.
a+b=8 ab=-\left(-12\right)=12
Tənliyi həll etmək üçün qruplaşdırmaqla sol əl tərəfi əmsallarına ayırın. Əvvəlcə sol əl tərəf -a^{2}+aa+ba-12 kimi yazılmalıdır. a və b ədədini tapmaq üçün həll ediləcək sistem qurun.
1,12 2,6 3,4
ab müsbət olduğu üçün a və b ədədinin eyni işarəsi var. a+b müsbət olduğu üçün a və b hər ikisi müsbətdir. 12 hasilini verən bütün belə tam ədəd cütlərini siyahıda qeyd edin.
1+12=13 2+6=8 3+4=7
Hər cüt üçün cəmi hesablayın.
a=6 b=2
Həll 8 cəmini verən cütdür.
\left(-a^{2}+6a\right)+\left(2a-12\right)
-a^{2}+8a-12 \left(-a^{2}+6a\right)+\left(2a-12\right) kimi yenidən yazılsın.
-a\left(a-6\right)+2\left(a-6\right)
Birinci qrupda -a ədədini və ikinci qrupda isə 2 ədədini vurub çıxarın.
\left(a-6\right)\left(-a+2\right)
Paylayıcı xüsusiyyətini istifadə etməklə a-6 ümumi ifadəsi vurulanlara ayrılsın.
a=6 a=2
Tənliyin həllərini tapmaq üçün a-6=0 və -a+2=0 ifadələrini həll edin.
\sqrt{2\times 6-3}+3=6
\sqrt{2a-3}+3=a tənliyində a üçün 6 seçimini əvəz edin.
6=6
Sadələşdirin. a=6 qiyməti tənliyin həllini ödəyir.
\sqrt{2\times 2-3}+3=2
\sqrt{2a-3}+3=a tənliyində a üçün 2 seçimini əvəz edin.
4=2
Sadələşdirin. a=2 qiyməti tənliyin həllini ödəmir.
a=6
\sqrt{2a-3}=a-3 tənliyinin bir həlli var.